	Poster Presentation #123	
	rotonin-7 Receptor Binding Sites in the Hippocampus Vary with Time of Day But Not jing	
	J. Duncan, Dept. of Neuroscience, U of Kentucky 7. Smith, Dept. of Neuroscience, U of Kentucky	
	M. Franklin, Dept. of Neuroscience, U of Kentucky	
	n of serotonin-7 (5-HT7) receptors modulates circadian rhythms, memory, REM sleep, and	
depression, proces	ses which are deleteriously affected by aging. Endogenous regulation of these receptors is	
	d, although pharmacological regulation has been reported. Chronic treatment with selective	
	e inhibitors known to increase extracellular serotonin levels leads to down-regulation of 5-HT7	
	e endogenous serotonin release exhibits a daily rhythm with higher levels at night, we	
	5-HT7 receptors exhibit 24-h variations characterized by lower nighttime expression. Our	
	Syrian hamsters showed that aging decreases 5-HT7 receptors in the dorsal raphe nucleus, a	
	these receptors affect circadian rhythms and REM sleep, but not in the several other	
	s, such as the suprachiasmatic nucleus. Here we tested whether aging reduces 5-HT7	
	pocampus, a likely substrate for the effects of 5-HT7 receptor drugs on memory and	
	Syrian hamsters (young, 3-5 months; old, 17-21 months) exposed to a daily alternating cycle of	
	were euthanized at 4 times of day (zeitgeber times [ZT]1, 6, 13, & 19; ZT12 = time of	
	m/age). Coronal sections through the hippocampus were processed for 5-HT7 receptor	
	sing [3H]8-OH-DPAT [2 nM] as the radioligand and SB-269970 [1 μ M] to define nonspecific	
	ctions and radioactive standards were apposed to X-ray films to generate autoradiograms that	
were assessed by computer-assisted microdensitometry. Robust specific 5-HT7 receptor binding was observed in the hippocampal dentate gyrus (DG), CA1, and CA2 but not in CA3. In the DG and CA1, specific 5-HT7		
receptor binding sites exhibited 24-h rhythms with troughs at night (P<0.005; P<0.05, respectively), in support of		
the hypothesis. Specific 5-HT7 receptor binding in the CA1 and DG were not significantly affected by age or by		
<u>, , , , , , , , , , , , , , , , , , , </u>	en time and age. In conclusion, these data indicate that 5-HT7 receptors in the hippocampus	
	me of day but not by aging. Furthermore, these findings suggest that the therapeutic	
	TT7 drugs may persist in old age but will depend on the daily time of administration.	
	H 2R)!-AG-13418	
Primary Presenter	/ email: Duncan, M.J. / midunc0@ukv.edu University of Kentucky	

Primary Presenter / email:	Duncan, M.J. / mjdunc0@uky.edu Faculty	University of Kentucky
Mentor / e-mail:	Duncan,M.J. / mjdunc0@uky.edu	

	Poster Presentation #124
Abstract Title:	Characterization of Sleep and Seizures in a Knockout Mouse Model of Lafora Disease
Author(s):	 D. M. Huffman, F. Joseph Halcomb III, MD, Department of Biomedical Engineering, U of Kentucky A. A. Ajwad, F. Joseph Halcomb III, MD, Department of Biomedical Engineering, U of Kentucky I. Moore, F. Joseph Halcomb III, MD, Department of Biomedical Engineering, U of Kentucky R. Mills, F. Joseph Halcomb III, MD, Department of Biomedical Engineering, U of Kentucky A. Uittenbogaard, Department of Cellular and Molecular Biochemistry, U of Kentucky M. Gentry, Department of Cellular and Molecular Biochemistry, U of Kentucky J. Pauly, Department of Pharmaceutical Sciences, U of Kentucky S. Sunderam, F. Joseph Halcomb III, MD, Department of Biomedical Engineering, U of Kentucky
cure. The dever models such as impediment to have used chei However, the ta seizure general patterns in LKC previously used the pilocarpine eight weeks ea with EEG/EMG thus collected of varying duratio	ra disease (LD) is a highly severe form of progressive myoclonic epilepsy, for which there is no lopment of treatments for LD would therefore provide inestimable relief from suffering. Animal is the Laforin KO (LKO) mouse have been used to study LD and its response to therapy. A major investigation is that the spontaneous seizures in LKO mice are subtle and infrequent. Investigators mical convulsants to induce acute seizures in LKO mice and test the therapeutic potential of drugs. argets/pathways impacted acutely by convulsants may be completely unrelated to those involved in tion in LKO mice. We therefore set out to detect and characterize spontaneous seizures and sleep 0 mice using a noninvasive piezoelectric motion sensor (Signal Solutions, LLC). We have d this "piezo" sensor for noninvasive sleep scoring and in vivo detection of spontaneous seizures mouse, a chronic epilepsy model. Here, we monitored six male LKO mice (2M/1F; 1-12 months old) for ch using the "piezo" sensor. In addition, we implanted three LKO mice (2M/1F; 1-12 months old) headmounts and monitored them for several weeks with simultaneous piezo and video. The data were analyzed using automated algorithms. Using this approach, several brief myoclonic events of n have been detected and verified. This establishes the feasibility of analyzing behavior in LKO at a time, a prerequisite to testing novel therapeutic interventions aiming to reduce seizures.
Supported by: Primary Preser	Igniting Research Collaborations seed grant from the University of Kentucky Inter / email: Sunderam, S. / ssu223@uky.edu University of Kentucky
	Faculty

Sunderam, S. / ssu223@uky.edu

Mentor / e-mail:

Poster Presentation #125			
Abstract Title:	Signaling and Expression of a Truncated, Constitutively Active Human Insulin Receptor in Hippocampal Neurons		
Author(s):	 H. N. Frazier, Department of Pharmacology and Nutritional Sciences, U of Kentucky K. L. Anderson, Department of Pharmacology and Nutritional Sciences, U of Kentucky S. Maimaiti, Center for Neurodegenerative Disease Research, U of Pennsylvania A. O. Ghoweri, Department of Pharmacology and Nutritional Sciences, U of Kentucky S. D. Kraner, Sanders Brown Center on Aging, U of Kentucky G. J. Popa, Department of Molecular and Cellular Biochemistry, U of Kentucky M. D. Mendenhall, Department of Molecular and Cellular Biochemistry, U of Kentucky C. M. Norris, Sanders Brown Center on Aging, U of Kentucky O. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky 		
Abstract: Insulin signaling is indispensable in the periphery and it is becoming clear that insulin is also important			
for normal brain function. Early stage clinical trials report a positive impact of intranasal insulin on memory recall in young subjects and patients with mild cognitive decline or Alzheimer's disease. To address alternative			
strategies for enhancing insulin signaling in the brain, we conducted a series of experiments using a constitutively active human insulin receptor (IR). Primary hippocampal neurons were infected with either a mammalian			

expression plasmid encoding a red fluorescence protein (dTomato), or a construct containing a truncated human IR? subunit (HA-IR?-dTomato) via a targeted lentiviral system. Immunocytochemistry assays probing for HA-IR? confirmed expression of the plasmid in hippocampal neurons. The expression level and effect of IR? on insulin signaling was confirmed via immunocytochemistry and Western immunoblots. Whole-cell calcium currents were recorded in infected cultures using patch-clamp techniques. Channel subtype specificity of the effect was also evaluated. Other experiments included 2-NDBG glucose imaging and Fura-2 calcium imaging. Lentiviral infection of mixed primary hippocampal cultures was successful for all constructs. Western blots of infected cells provide evidence that the truncated IR? plasmid confers elevated IR signaling. Immunocytochemistry shows IR? expression in 80% of infected cells. Constitutive activity was also detected. Patch-clamp recordings of IR?-expressing neurons show calcium currents are a target of IR activity. Calcium levels were not altered, indicating little impact of insulin signaling on resting conditions. Glucose utilization was altered with expression of IR?. This characterization provides insights into future intervention approaches.

Supported by:	NIH awards: 2R01AG033649-07, T32-DK007778, P30GM110787		
Primary Present	ter / email:	Frazier, H. N. / hilaree.frazier@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:		Thibault, O. / othibau@uky.edu	

	54 Annual Boot N Spring Neuroscience Day	
	Poster Presentation #126	
Abstract Title:	Vessel Painting Using Dil Following Traumatic Brain Injury in Mice	
	C. N. Bodnar, Department of Neuroscience, Spinal Cord and Brain Injury Research Center, U of	
Author(s):	Kentucky	
	A. D. Bachstetter, Department of Neuroscience, Spinal Cord and Brain Injury Research Center, U	
	of Kentucky	
	umatic brain injury (TBI) is a major health concern in the United States. In 2013, there were a total	
	I related ER visits, hospitalizations, and deaths. The mechanical insult and secondary injury	
	lead to disruption of the vasculature and blood brain barrier (BBB) causing inflammation, metabolic	
•	nd ischemic injury. We have recently found using (Pseudo-Continuous Arterial Spin Labeling	
	netic resonance imaging (MRI) deficits in cerebral blood flow following experimental mild TBI. To	
	ellular underpinnings of the decreased cerebral blood flow seen following an experimental mild TBI,	
	ecently described vessel painting approach. This method uses a solution of Dil perfused through the	
	bus work with Dil has been shown to label large and small vessels and can be used to identify	
individual endothelial cells. We hypothesized that experimental mild TBI would result in a decrease in perfusion of		
Dil to injured regions of the brain, caused by loss of perfusion of the small blood vessels and capillaries. To test		
the hypothesis adult mice were subjected to either sham or mild closed head injury (CHI) and sacrificed 6 hours		
or 3 days following injury. Dil was perfused through the circulatory system in order to label vessels and		
microvessels. Whole brain tissue was collected and imaged using a Confocal microscope. Following CHI, mice		
had a reduction in the amount of microvessels within the cortex surrounding the injury. Loss of microvascular		
network following mild TBI presents a potential point for therapeutic intervention.		
Supported by:	R00 AG044445 P30 GM110787	
Primary Prese	enter / email: Bodnar, C. N. / colleen.bodnar@uky.edu University of Kentucky	

Primary Presenter / email:	Bodnar, C. N. / colleen.bodnar@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:	Bachstetter, A. D. / adam.bachstetter@uky.edu	

Poster Presentation #127		
Abstract Title:	Long Term Intranasal Administration of Rapid Acting Insulin Aspart in Young and Aged F344 Rats	
Author(s):	 A. O. Ghoweri, Department of Pharmacology and Nutritional Sciences, U of Kentucky K. L. Anderson, Department of Pharmacology and Nutritional Sciences, U of Kentucky H. N. Frazier, Department of Pharmacology and Nutritional Sciences, U of Kentucky G. Fox, Department of Pharmacology and Nutritional Sciences, U of Kentucky M. Xia, Department of Pharmacology and Nutritional Sciences, U of Kentucky K. Hargis, Department of Pharmacology and Nutritional Sciences, U of Kentucky J. C. Gant, Department of Pharmacology and Nutritional Sciences, U of Kentucky L. D. Brewer, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky E. M. Blalock, Department of Pharmacology and Nutritional Sciences, U of Kentucky O. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky 	
E. M. Blalock, Department of Pharmacology and Nutritional Sciences, U of Kentucky O. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky Abstract: The need for novel therapeutics to combat AD progression is indispensable. It has been observed that patients with AD have deficient brain insulin signaling, thus the use of intranasal insulin is gaining strength as a tool to offset cognitive decline. Our group previously reported enhanced brain insulin signaling, memory recall, and increased cerebral blood flow in studies utilizing intranasal delivery of short and long acting insulin formulations, as well as in single or short term (9 doses) conditions. This study addresses the effect of long term (>60 doses) rapid acting insulin aspart on learning and memory in young (5 months) and aged (21 months) F344 rats. Over 3 months, animals received either daily intranasal insulin aspart or saline. Memory recall and spatial mapping were assessed using the Morris water maze. An aging difference was present, including a significant interaction term in the total proximity average to the platform. This indicates intranasal insulin aspart influences memory recall differently in young and aged animals. Left brain hemispheres were sectioned and probed for IHC and percent immunostained areas in different subfields of the hippocampus were quantified, revealing an aging trend and a significant interaction term. Right hippocampi were RNA extracted and analyzed using microarray. Results show long term intranasal insulin altered some aspects of memory recall in aged animals. Further, it appears chronic insulin significantly reduced insulin receptor immunostaining in dorsal hippocampus of aged animals. This result suggests long term intranasal insulin exposure may influence receptor expression differently in young and aged hippocampus.		
Supported by: 2R01AG033649-06A1 T32-DK007778		
Primary Presenter / email: Ghoweri, A. O. / Aogh222@uky.edu University of Kentucky		

Mentor / e-mail:

Ghoweri, A. O. / Aogh222@uky.ec Graduate Student Thibault, O. / othibau@uky.edu

13th Annual CCTS Spring Conference Friday, April 13, 2018 24th Annual BGSFN Spring Neuroscience Day

Poster Presentation #128		
Abstract Title:	Behavioral Economic Approach to Understanding Co-Use of Alcohol and Nicotine in Female P Rats	
Author(s):	 S. E. Maggio, Department of Psychology, University of Kentucky J. S. Beckmann, Department of Psychology, U of Kentucky M. A. Saunders, Department of Psychology, U of Kentucky M. A. Prendergast, Department of Psychology, U of Kentucky R. L. Bell, Department of Psychiatry, Indiana U School of Medicine K. Nixon, Department of Pharmaceutical Sciences, U of Kentucky M. T. Bardo, Department of Psychology, U of Kentucky 	

Abstract: The co-use of alcohol and nicotine is the most prevalent polysubstance use disorder worldwide. Toward understanding the relationship of alcohol and nicotine, the current study applied behavioral economic principles to co-self-administration of alcohol and nicotine in an attempt to describe the relationship between these drug reinforcers when they are concurrently available. Young adult female alcohol-preferring (P) rats were used to examine the changes in consumption of concurrently available oral ethanol (EtOH; 0 vs. 15%, 2-bottle choice) and i.v. nicotine (0.03 mg/kg/infusion, active vs. inactive lever). Across daily 1-hr sessions, the price of nicotine increased (increased FR requirement per infusion), while the price of alcohol remained constant. Results showed a significant interaction (F(11, 110) = 15.72, p < 0.05), such that as the price of nicotine increased from FR1 to FR135, nicotine intake decreased, whereas EtOH consumption increased. There was no significant change in water consumption as the price of nicotine increased. Results also showed that increases in the relative price of nicotine eventually shifted preference from nicotine to EtOH. When the changes in consumption for nicotine, EtOH and water were quantified via a cross-price elasticity analysis, results indicated that EtOH served as an economic substitute for nicotine, I = -0.79 (p<0.05), whereas water was economically independent of nicotine. I = -0.18 (n.s.). In summary, when EtOH and nicotine are concurrently available. EtOH acts as an economic substitute for nicotine in female P rats, suggesting that common neurobehavioral mechanisms may influence the relationship between EtOH and nicotine co-use.

Supported by:	NIH grants UL1	TR000117, R01AA025591, P50 DA05312, T	32 DA016176, and U24AA015512.
Primary Preser	nter / email:	Maggio, S. E. / sarah.maggio@uky.edu Graduate Student	University of Kentucky
Mentor / e-mai	:	Bardo, M. T. / mbardo@uky.edu	

	Poster Presentation #129	
Abstract Title:	Myelin Modulates Macrophage Inflammatory Responses After Spinal Cord Injury	
	T.J. Kopper, Spinal Cord and Brain Injury Research Center, Department of Physiology, U of Kentucky	
Author(s):	B. Zhang, Spinal Cord and Brain Injury Research Center, Department of Physiology, U of	
	Kentucky J.C. Gensel, Spinal Cord and Brain Injury Research Center, Department of Physiology, U of Kentucky	
Abstract: Spin	al cord injury (SCI) produces chronic inflammation largely mediated by resident microglia and	
	ocytes (here, collectively referred to as macrophages). These activated SCI macrophages	
	pt a pro-inflammatory, pathological state that continues long after the initial injury. Pro-inflammatory	
	potentiate secondary damage and impair SCI recovery, yet the mechanisms driving chronic	
	CI macrophage activation are poorly understood. After SCI, macrophages clear and accumulate	
	in debris. Published data demonstrates that myelin debris can directly stimulate macrophages to	
	activation states. We hypothesize that myelin, in combination with inflammatory stimuli within the	
	ironment, increases pro-inflammatory macrophage activation. To test this hypothesis we stimulated	
	lerived macrophage with pro-inflammatory stimuli (LPS+INF-gamma) in vitro in the presence or	
	elin. Myelin co-stimulation significantly increased pro-inflammatory IL-12 cytokine production,	
decreased anti-inflammatory IL-10 production, and increased reactive oxygen species production relative to		
unstimulated or LPS+INF-gamma treated controls. One potential mechanism for the myelin-mediated pro- inflammatory potentiation is increased activation of the enzyme cytosolic phospholipase A2 (cPLA2) within		
macrophages. This enzyme has the potential to modify membrane lipids into direct and indirect pro-inflammatory		
stimuli. Indeed, through immunohistochemical analyses of spinal cord tissue sections after T9 contusion SCI in		
female C57BL/6 mice we observed cPLA2 activation in myelin-laden macrophages at both 7 and 28 days post		
	studies aim to link this continued cPLA2 activity to potentiated pro-inflammatory macrophage	
	explore potential therapeutics to block these pathways after SCI.	
Supported by:	NINDS R01NS091582-01A1 NINDS T32 NS077889	
Primary Preser	nter / email: Kopper, T. J. / Timothy.Kopper@uky.edu University of Kentucky	
	Graduate Student	

Mentor / e-mail:	Gensel, J. C. / Gensel.1@uky.edu

13th Annual CCTS Spring ConferenceFriday, April 13, 2018Lexington Convention Center34th Annual BGSFN Spring Neuroscience Day

	Annual Boor N opring Neuroscience Bay
	Poster Presentation #130
Abstract Title:	Myelin Basic Protein and Degraded Myelin Basic Protein in the Frontal Cortex of Individuals with Down Syndrome and Alzheimer Disease
	F. Triani, Sanders-Brown Center on Aging, U of Kentucky and Department of Biochemical Sciences, Sapienza U of Rome, Rome, IT
Author(s):	F. Schmitt, Sanders-Brown Center on Aging and Department of Neurology, U of Kentucky E. Head, Sanders-Brown Center on Aging and Department of Pharmacology & Nutritional Sciences, U of Kentucky
have Alzheime (WM) integrity anisotropy (FA protein (MBP) protein in the c modifications of this myelin she hypothesis, we series of 39 ca sporadic AD ca increased prote This result sug	Its with Down syndrome (DS) are at increased risk for cognitive decline, dementia and virtually all r's disease (AD) neuropathology by 40 years. Previous studies showed a loss of white matter in demented adults with DS by magnetic resonance imaging based measures of fractional). Thus, we hypothesized that losses in WM integrity may be attributable to losses in myelin basic in frontal cortex. MBP is a major component of the myelin sheath and the second most abundant entral nervous system. The major MBP isoform is 18.5 kDa, but numerous post-translational occur. Post-translation modifications can lead to instability of myelin and degradation. Destruction of ath in demyelinating disease results in nerve conduction failure and neurodegeneration. To test our analyzed by western blot the expression level of MBP and degraded MBP (dMBP) in an autopsy ses with DS (n=8 with DS and n=31 with DS and AD) and 28 controls without DS, along with 7 ases. Our results, suggest that total MBP remained unchanged although there was a trend towards ein in sporadic AD. In contrast, dMBP increased with AD both in DS and in sporadic AD cases. gest that white matter integrity is compromised by an accumulation of degraded MBP in DS with neration may be attributable to the accumulation of degraded myelin sheaths.
Supported by:	NIH NICHD R01HD064993

Primary Presenter / email:	Triani, F. / francesca.triani@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:	Head, E. / elizabeth.head@uky.edu	

	Poster Presentation #131
Abstract Title:	A Mouse Glioblastoma Model to Study New Therapeutic Strategies
Author(s):	 J. A. Schulz, Department of Pharmaceutical Sciences, College of Pharmacy, U of Kentucky A. M. S. Hartz, Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, College of Medicine, U of Kentucky B. Bauer, Department of Pharmaceutical Sciences, College of Pharmacy, U of Kentucky
patient surviva barrier efflux tr the tumor at th survival. For de at Uppsala Unic cells is unknow for new gliobla transfected wit brains of immu imaging. MRI w implanted with an increasing b exponentially g the 120-day stu	blastoma is one of the deadliest human cancers. Even aggressive treatment regimens improve I only by months. Chemotherapy fails because anticancer drugs are substrates for the blood-brain ansporters P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) and do not reach erapeutic concentrations. Thus, novel treatment strategies are necessary to improve patient ecades, researchers used U87MG glioblastoma cells to test new approaches. In 2016, researchers iversity using Small Tandem Repeat and mitochondrial DNA analysis found that the origin of these in{Allen, 2016 #433}{Allen, 2016 #433}{Allen, 2016 #433}{Allen, 2016 #433}{Allen, 2016 #433}. Thus, there is a need stoma models. Here, we compare the U87MG and U251NG models. U251MG cells were h the reporter gene luciferase. U87-luc2 (n=6) and U251-luc2 (n=12) cells were implanted into the nocompromised mice. Tumor take was verified and monitored weekly with in vivo bioluminescence was used for additional analysis. Survival was analyzed with the Kaplan-Meier method. Mice 150,000 U87-luc2 cells had a median survival of 31 days. Tumors grew exponentially as shown by pioluminescence signal. While mice implanted with the same number of U251-luc2 cells had growing tumors as shown by bioluminescence imaging, they did not succumb to their tumors within udy. Increasing the number of implanted U251-luc2 cells to 500,000 decreased survival time to 82 1-luc2 model requires further characterization, but our current data suggest that it can be used for
our glioblastom	
Supported by: Primary Preser	American Cancer Society Institutional Research Grant (PI: Bauer)

Primary Presenter / email:	Schulz, J. A. / julia.schulz@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:	Bauer, B. / bjoern.bauer@uky.edu	

	Poster Presentation #132
Abstract Title:	Characterizing the Endogenous Nrf2-ARE Time Course after Controlled Cortical Impact Injury in Male and Female Mice
Author(s):	J. Dunkerson, Department of Neuroscience, U of Kentucky E. D. Hall, Spinal Cord and Brain Injury Research Center, U of Kentucky
U.S. each year. remains a sensil antioxidant resp interest from a p selection of its d cortical impact (the ipsilateral hip blot analysis was cortical protein of and sustained d only in females. quantities, Nrf2 f	natic brain injury is a complex and chronic disease affecting nearly 2.8 million individuals in the Free radical induced oxidative damage, arguably one of the most validated secondary injuries, ble target for acute neuroprotective interventions. In that regard, understanding the endogenous onse, specifically the mechanisms of the redox sensitive transcription factor Nrf2, has become of wharmacological standpoint. This study aimed to establish the time course of Nrf2 activity and a letoxifying enzymes. CF-1 mice (n=30 males, n=30 females) received a unilateral controlled CCI) injury centered over the left parietal cortex. Cortical tissue samples of the contusion site and oppocampus were harvested at varying time points (24hr, 48hr, 72hr, 7 days) post injury. Western s performed using whole cell lysates on the following proteins: Nrf2, HO-1, and NQO1. Regarding quantities, Nrf2 steadily decreased in females over 7 days, whereas males experienced a sudden rop until day 7. HO-1 spiked at 72hrs in both males and females, and remained elevated by day 7 There were no significant differences in NQO1 in either sex. Regarding hippocampal protein fluctuations did not reach significance at any of the recorded time points in either sex. HO-1 nrs and 72hrs in males. NQO1 increased at 72hrs in females. The time course of Nrf2 activity ifferent in male and female mice.
Supported by:	NIH award: R01NS100093

Primary Presenter / email:	Dunkerson, J. / jdunkerson@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:	Hall, E. D. / edhall@uky.edu	

	Poster Presentation #133
Abstract Title:	Reduced Voltage-Gated K+ Channel Function in GABAergic NTS Neurons in a Murine Model of Acquired TLE and SUDEP
Author(s):	I.D. Derera, Department of Physiology, U of Kentucky B.N. Smith, Department of Physiology, Epilepsy Center (EpIC), U of Kentucky
deaths. Altered SUDEP in gen channels in NT cardiac and re channelopathic seizures. We h pilocarpine-inc Tg(GADGFP)4 results show a to age-matche NTS neurons f A-type K+ curr NTS neurons f width in TLE m	den unexpected death in epilepsy (SUDEP) accounts for approximately 17% of epilepsy-related d voltage-gated K+ current in neurons of the nucleus tractus solitarius (NTS) may contribute to etic epilepsy models, however, little is known regarding possible changes in voltage-gated K+ TS neurons during development of TLE. GABAergic NTS neurons receive information regarding spiratory function and serve to modulate this information to regulate cardiorespiratory output. In K+ es, altered NTS neuron function contributed to cardiorespiratory collapse and sudden death after hypothesized that voltage-gated K+ channel function in GABAergic NTS neurons is altered in the luced SE model of TLE. Pilocarpine (282 mg/kg) was administered to 4 week old male FVB-t570Swn/J (i.e. GIN mice) to induce SE and eventual development of TLE. Electrophysiological n increase in action frequency and half-width in GABAergic NTS neurons from TLE mice compared d controls. Upon application of 4-AP (5mM), action potential firing rate and half-width in GABAergic rom control mice was increased to levels similar to that in neurons from TLE mice, suggesting that ent function may be suppressed following TLE. Peak A-type K+ current is reduced in GABAergic rom TLE mice compared to controls, consistent with the increase in action potential firing and half-ince. These results suggest voltage-gated K+ channel function is reduced in the NTS of mice with which contributes to increased neuronal activity and may increase SUDEP risk.
Supported by:	NIH Award R21 NS 088608 NIH Award R01 DK056132 UK Epilepsy Center
Primary Prese	

 Primary Presenter / email:
 Derera, I.D. / isabel.derera@uky.edu
 University of Kentucky

 Graduate Student
 Mentor / e-mail:
 Smith, B. N. / bnsmit4@email.uky.edu

	Poster Presentation #134
Abotroot Titlou	Estradiol Effects on Excitatory and Inhibitory Neurons Controlling Fluid Intake in the
Abstract Title:	Subfornical Organ
Author(s):	J. A. Howell, Department of Biology, U of Kentucky
()	J. Santollo, Department of Biology, U of Kentucky
	adiol decreases fluid intake in females, but the mechanism(s) underlying this effect is unclear. The
•	an (SFO) is a key brain region that regulates fluid intake. It contains excitatory neurons that
	ng, inhibitory neurons that suppress drinking, and estrogen receptors. We, therefore, tested the
	estradiol decreases water intake by inhibiting excitatory signals and increasing inhibitory signals in
	ontrols fluid intake. First, we replicated previous reports showing that estradiol treatment in
	(OVX) rats reduces fluid intake stimulated by 24 h water deprivation. Using a repeated-measures
	s were injected with estradiol benzoate (EB, 10 µg) or vehicle for two consecutive days. Twenty-
	rats were water deprived or retained fluid access as a control. The following day, rats were given
	e and licks were measured for 1 h. As expected, after water deprivation EB-treated rats drank
	s than oil-treated rats (p < 0.05). Furthermore, we extended previous research by analyzing tructure during the test period. There was no difference in average burst size but after water
•	reated rats had significantly more bursts than EB-treated rats (p < 0.05) suggesting that estradiol
	by increasing post-ingestive feedback signals. Ongoing studies are elucidating the neural
	volved by using immunohistochemistry to measure neuronal activation in excitatory and inhibitory
	SFO after fluid deprivation or rehydration in OVX rats treated with EB or vehicle. This work will
	on how estradiol influences the neural thirst circuit.
Supported by:	ANS start up funding for Jessica Santollo
Primary Preser	

Primary Presenter / email:	Howell, J. A. / julia.howell@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:	Santollo, J. / j.santollo@uky.edu	

	Poster Presentation #135
Abstract Title:	An Emerging Role for Hsp27 in VCID
	B. R. Price, Sanders Brown Center on Aging, U of Kentucky
Author(s):	T. L. Sudduth, Sanders Brown Center on Aging, U of Kentucky
/ (0/)	C. A. Dickey, Byrd Institute, U of South Florida, Tampa, FL
	D. M. Wilcock, Sanders Brown Center on Aging, U of Kentucky
	erhomocysteinemia (HHcy) is a risk factor for vascular cognitive impairment and dementia (VCID),
	neimer's disease. The mechanism by which HHcy promotes VCID or AD remains unknown. Using
	se model of VCID, we found the earliest detectable event in the brain is a robust neuroinflammatory
•	s is followed by neurovascular astrocyte disruptions, cerebral hypoperfusion, microhemorrhages,
	egeneration, and cognitive impairment. To gain mechanistic insights into the signaling pathways by
	duces these, we focused on heat shock protein 27 (Hsp27). Hsp27 binds protein-folding
	and prevents their aggregation. Given that Hsp27 is shown to be involved in cerebrovascular
	stroke models, and is known to signal through the p38 MAPK signaling pathway, a critical driver of
	natory response, we hypothesized Hsp27 is an early mediator of HHcy-induced neuroinflammation,
	the aforementioned downstream events. Our wildtype-HHcy model displayed significant pro-
	esponses and astrocytic end-foot disruptions, as well as significant microhemorrhage induction. We re was no induction of the pro-inflammatory phenotype in the Hsp27-/- mice subjected to the HHcy-
	or 14 weeks. We also found a reduction in the microhemorrhage incidence in the Hsp27-/- mice subjected to the rin cy-
	ed survival of the mice, indicating that they were resistant to the HHcy diet. Hsp27 appears to be an
	mediator of HHcy-induced pathology. Deletion of Hsp27 provides protection from diet-induced
	inflammation, and cerebrovascular events. This suggests that Hsp27 may be an attractive
	get for treatment of VCID.
Supported by:	NIH award: T32

Supported by: NIH award: 132	
Primary Presenter / email:	Price, B. R. / brpr222@g.uky.edu University of Kentucky
	Graduate Student
Mentor / e-mail:	Wilcock, D. M. / donna.wilcock@uky.edu

13th Annual CCTS Spring Conference Friday, April 13, 2018 April 13, 2018 Lexington Convention Center 34th Annual BGSEN Spring Neuroscience Day

	Poster Presentation #136
Abstract Title:	Kappa opioid receptors provide endogenous analgesia and prevent the transition from acute to chronic pain via an adenylyl cyclase-1 dependent mechanism
Author(s):	 L. Custodio-Patsey, Department of Physiology, U of Kentucky B. Smith, Department of Physiology, U of Kentucky B.K. Taylor, Department of Physiology, U of Kentucky; Department of Anesthesiology, U of Pittsburgh, Pittsburgh, PA
compensatory a intrathecal admi- after cutaneous address the cor antagonists (no hyperalgesia re- lndeed, when g dose-dependen after surgery, in LY2456302(10u positive profiles neurons. Since also mediates the administration of KOR signaling of	in injury elicits latent sensitization (LS), a prolonged period of pain vulnerability. LS is masked by activity of endogenous inhibitory systems in the dorsal horn. We previously reported that inistration of mu opioid receptor (MOR) antagonists reinstates hyperalgesia for several months inflammation. However, whether other opioid receptors contribute to LS inhibition is unclear. To attribution of the kappa opioid receptor (KOR), we performed intrathecal injection of KOR selective r-BNI or LY2456302) at 1 or 13months after surgical incision of the hindpaw. The initial solved within 1-3weeks, and we hypothesized that KOR analgesia contributed to this resolution. iven four weeks after injury, we found that nor-BNI or LY2456302 reinstated hyperalgesia in a t manner (0.1ug-10ug,i.t.). Remarkably, reinstatement to LY 10ug was also observed 13 months dicating that LS and compensatory KOR analgesia is very long-lasting. Next, we found that ug,i.t.) increased the expression of touch–induced phosphorylated signal-regulated kinase (pERK) in the dorsal horn 3 weeks after surgery, consistent with LS-associated sensitization of spinal adenylyl cyclase-1 (AC1) mediates the LS masked by MOR, we tested the hypothesis that AC1 he LS masked by KOR analgesia using the AC1 inhibitor, NB001. We found that pre- of NB001 blocked pain reinstatement by LY. Ongoing studies are examining the hypothesis that proposes LS through a signaling pathway that includes one or both of the downstream cAMP tors, protein kinase A (PKA) or exchange protein activated by CAMP (Epac).

Primary Presenter / email:	Custodio-Patsey, L. / lilian.custodio@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:	Taylor, B.K. / brad.taylor@uky.edu	

13th Annual CCTS Spring Conference Friday, April 13, 2018 Adth Annual BGSFN Spring Neuroscience Day

	Poster Presentation #137
Abstract Title:	Insulin-like growth factor-1 overexpression enhances neurogenesis and activates the mTOR pathway after moderate TBI
Author(s):	 E.L. Littlejohn, Spinal Cord and Brain Injury Research Center, Dept of Physiology, U of Kentucky D. A. Scott, Spinal Cord and Brain Injury Research Center, Dept of Physiology, U of Kentucky A. J. DeSana, Spinal Cord and Brain Injury Research Center, Dept of Physiology, U of Kentucky J. A. Juras, Spinal Cord and Brain Injury Research Center, Dept of Physiology, U of Kentucky K. E. Saatman, Spinal Cord and Brain Injury Research Center, Dept of Physiology, U of Kentucky
	rly 5 million people in the United States are living with TBI related disabilities, in part because of the
	capacity to replace lost and damaged neurons. Immature neurons in the hippocampus are highly
	auma, but can be replaced through proliferation and differentiation of neural stem cells in the
	ne. Insulin-like Growth Factor 1 (IGF1) modulates basal and injury-induced hippocampal Mammalian target of rapamycin (mTOR), a signaling molecule downstream of IGF1, has been
	potential target for TBI interventions because of its regulatory role in plasticity and cell survival. We
	hat increased IGF1 would stimulate mTOR activity following injury, resulting in improved
	We utilized a transgenic mouse model with IGF1 overexpression restricted to astrocytes (IGF Tg)
	evels of IGF1 by means of injury-induced astrogliosis. To this end IGF Tg and wild-type (WT) mice
	rate controlled cortical impact injury or received sham injury and survived 1, 3 or 10d. At 1 and 3d
following mode	rate injury, immunohistochemical labeling of pS6, a well characterized downstream effector of
	antified in the granule cell layer, molecular layer, and the hilus of the dentate gyrus. Analysis of
pS6 at the injury epicenter suggests that IGF1 stimulates activity of the mTOR pathway following moderate TBI in	
a region-specif	ic manner. At 10d after moderate injury, IGF1 overexpression enhances recovery of immature
neurons.	
Supported by:	Kentucky Spinal Cord and Head Injury Research Trust (KSCHIRT) 14-12A and NIH R01 NS072302-02S1, R01 NS0072302, T32 NS077889, and P30 NS051220.
Primary Prese	nter / email: Littlejohn, E. L. / erica.littlejohn@uky.edu University of Kentucky
	Graduate Student

Mentor / e-mail:

Littlejohn, E. L. / erica.littlejohn@uky.edu Univers Graduate Student Saatman, K. E. / k.saatman@uky.edu

13th Annual CCTS Spring Conference Friday, April 13, 2018 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #138
Abstract Title:	Lafora disease premature termination condons (PTCs) are likely candidates for suppression by aminoglycosides
Author(s):	 Z. Simmons, Dept of Molecular Medicine and Biochemistry, U of Kentucky A. Sherwood, Dept of Molecular Medicine and Biochemistry, U of Kentucky S. Li, Dept of Pharmacology and Nutritional Sciences, U of Kentucky S. Garneau-Tsodikova, Dept of Pharmacology and Nutritional Sciences, U of Kentucky M. Gentry, Dept of Molecular Medicine and Biochemistry, U of Kentucky
Supported by:	CCTS TL1 Pre-doctoral training grant
Primary Preser	ter / email: Simmons, Z. R. / zoe.simmons@uky.edu University of Kentucky Graduate Student

Mentor / e-mail: Gentry, M. S. / Matthew.Gentry@uky.edu

Friday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #139		
	Determining the Utility of the African Spiny Mouse as a Novel Mammalian Model of Spinal		
Abstract Title:	Cord Injury		
	M. B. Orr, Department of Physiology, Spinal Cord and Brain Injury Research Center, U of		
	Kentucky		
	C. M. Kloske, Integrated Biomedical Sciences, U of Kentucky		
Author(s):	K. R. Richards, College of Health Sciences, Spinal Cord and Brain Injury Research Center, U of		
Aution(3).	Kentucky		
	A. W. Seifert, Department of Biology, U of Kentucky		
	J. C. Gensel, Department of Physiology, Spinal Cord and Brain Injury Research Center, U of		
	Kentucky		
Abstract: Less	s than 1% of hospitalized victims of spinal cord injury (SCI) experience full recovery by the time of		
discharge, whi	ch reflects an inability to regenerate injured spinal tissues and an absence of SCI therapies.		
Researchers c	ommonly use regenerating, non-mammalian models to identify targets for inducing regeneration,		
but test therap	but test therapies on mammals that recapitulate human SCI. Unfortunately, the phylogenetic gap between animal		
models creates	models creates a barrier to translation. A mammalian model with enhanced regenerative capabilities would serve		
as a powerful tool for identifying translatable therapeutic targets for inducing regeneration after SCI. Spiny mice,			
mammals clos	mammals closely related to mice, exhibit scar-free regeneration from peripheral injuries, which coincides with a		
	generative inflammatory and extracellular matrix (ECM) responses. The inflammatory and ECM		
	response are key regulators of SCI progression, but spiny mouse SCI responses and regenerative capacity		

suite of pro-regenerative inflammatory and extracellular matrix (ECM) responses. The inflammatory and ECM response are key regulators of SCI progression, but spiny mouse SCI responses and regenerative capacity remain uninvestigated. We hypothesize that spiny mice will exhibit pro-regenerative inflammatory and ECM responses to SCI, which will lead to enhanced axonal regeneration compared to lab mice. Histological and in vitro techniques have been established for comparative SCI studies in spiny mouse and mouse. Initial results indicate spiny mice and mice have comparable gross spinal neuroanatomy and similar dorsal root ganglion neurite outgrowth inhibition by chondroitin sulfate proteoglycans; preliminary data also indicate potential differences in SCI responses. Future studies will more closely analyze SCI responses and the subsequent effects on axon regeneration following SCI. This study will determine the utility of the spiny mouse as a novel mammalian model of SCI and spinal regeneration.

Supported by:	College of Medicine Fellowship for Excellence in Graduate Research		
Primary Preser	nter / email:	Orr, M.B. / michael.orr1991@gmail.com	University of Kentucky
		Graduate Student	
Mentor / e-mail		Gensel, J.C. / gensel.1@uky.edu	

Friday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #140
Abstract Title:	Comparative study of sleep and eye closure between A. cahirinus and M. musculus
	L. E. Guerriero, Department of Biology, U of Kentucky
	C. Wang, Department of Biology, U of Kentucky
	K. S. Jung, Department of Ophthalmology & Visual Sciences, U of Kentucky
Author(a):	J. E. Giles, Department of Biology, U of Kentucky
Author(s):	S. Sunderam, Department of Biomedical Engineering, U of Kentucky
	M. E. Kleinman, Department of Ophthalmology & Visual Sciences, U of Kentucky
	A. W. Seifert, Department of Biology, U of Kentucky
	B. F. O'Hara, Department of Biology, U of Kentucky
Abstract: To understand the function and origins of sleep, sleep needs to be studied across many different	

Abstract: To understand the function and origins of sleep, sleep needs to be studied across many different species. Although sleep is well conserved throughout mammals, 95% of papers are on three species: Homo sapiens, Mus musculus, and Rattus norvegicus. We aimed to characterize sleep in a Murid rodent, Acomys cahirinus. Previous research, using a well validated, non-invasive, piezoelectric system, have shown that A. cahirinus and M. musculus have relatively similar sleep and wake profiles, with a few interesting differences. In order to further understand these differences in sleep architecture, electroencephalogram (EEG) recordings were performed. Our data show that A. cahirinus have significantly longer sleep periods and exhibit a higher amount of REM sleep. Most strikingly, A. cahirinus do not close their eyes while sleeping, day or night. This allows for easy examination of pupil size dynamics during sleep. In order to test whether the sleep patterns of A. cahirinus are affected by external light stimulation, we designed a light flashing experiment. A. cahirinus spend significantly less time in REM during light flashing compared to baseline data, but M. musculus have no difference in REM sleep percentage. Interestingly, histological data show that A. cahirinus have much larger eyes, thinner retinas, and thicker corneas than M. musculus. Electroretinography (ERG) results, specifically b-wave amplitudes, are significantly different. While some other mammals can sleep with eyes half open, or short periods fully open, this is the first report of eyes open 100% of the time, raising questions regarding the adaptive value of this unusual behavior.

Supported by:	This project was funded with internal funding from the Department of Biology at University of Kentucky.		
Primary Prese	nter / email:	Guerriero, L. E. / I.guerriero@uky.edu Graduate Student	University of Kentucky
Mentor / e-mai	:	O'Hara, B. F. / bohara@uky.edu	

		Poster Presentation #141
Abstract Title:	Elucidating Per Development in	iocular Mesenchyme Migratory Behaviors during Ocular Anterior Segment Zebrafish
Author(s):		eulen, Department of Biology, U of Kentucky Department of Biology, U of Kentucky
Abstract: The anterior segment (AS) is critical for directing light onto the vertebrate retina and maintaining intraocular pressure. Anterior Segment Dysgenesis (ASD) is a spectrum of developmental disorders effecting the AS and resulting in visual impairment. The neural ectoderm, surface ectoderm, and neural crest-derived Periocular Mesenchyme (POM) cell lineages come together to assist in assembling these structures. Missteps in the processes incorporating the POM into AS tissues may predispose individuals to ASD. I hypothesize that the AS-associated POM population is comprised of several subpopulations, each with unique population sizes and migratory behaviors. Transgenic embryos of four POM genes (FoxC1b:GFP, FoxD3:GFP, Pitx2:GFP, and Lmx1b:GFP) were imaged using 3D confocal and Lightsheet microscopy. POM cells in fixed samples (22-72hpf) were quantified based on total population size and quadrant of origin. Population size was variable as development progressed with significantly more cells expressing FoxC1b. FoxC1b and FoxD3 cells distribute throughout the AS, while Pitx2 cells remain in temporal regions and Lmx1b cells restrict to nasal regions. AS POM cells were imaged for 24 hours and analyzed for behavior, trajectory, average velocity, and total distance traveled using Fiji and Arivis 4D software. FoxC1b expressing cells migrate farther and faster than cells within the other subpopulations. However, all POM cells on the AS exhibited the same stochastic migratory behaviors. Results thus far indicate the presence of at least four distinct subpopulations within the AS-POM population. Future directions will look into the possibility that each subpopulation contributes to a unique cell type or structure within the AS.		
	NIH award: R01	EY027805
Primary Preser	nter / email:	Van Der Meulen, K. L. / kristyn.vandermeulen@uky.edu University of Kentucky

Primary Presenter / email:	Kentucky Graduate Student	,	
Mentor / e-mail:	Famulski, J. K. / jakub.famuslki@uky.edu		

13th Annual CCTS Spring Conference Friday, April 13, 2018 April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #142
Abstract Title:	Siah E3 ubiquitin ligase indirectly regulates Pax2 gene expression by targeting NIz2 for proteosomal degradation during retinal morphogenesis.
Author(s):	W. P. Piedade, Department of Biology, U of Kentucky J. K. Famulski, Department of Biology, U of Kentucky
Abstract: We s	screened the zebrafish proteome for the Siah "degron" motif and identified a potential target, NIz2,
a repressor of I	Pax2 expression known to be involved in proper choroid fissure fusion. Using whole mount in situ
hybridization (V	VISH) and Immunohistochemistry (IHC), we found Siah1 and Siah2I genes and proteins expressed
	system and eyes during early embryonic development. The expression of NIz2, overlaps with the
	ooth Siah genes. In order to analyze endogenous Siah activity, we constructed a GFP reporter
	ining the Siah "degron" motif found in NIz2 thus enabling real time readout of Siah activity. Our
•	porter assay confirmed endogenous Siah activity in the developing eye between 20-48hpf. To
	uitin ligase function during eye morphogenesis, we employed gain and loss-of-function
	injecting Siah or dominant negative, Siah?RING, mRNA. Injected embryos were analyzed using
	, as a readout of basement membrane integrity and fissure fusion while WISH for Pax2, served as
	NIz2 activity. Siah and Siah?RING mRNA injections both inhibited disassembly of the basement
membrane and ultimately optic fissure fusion up to 72hpf. Siah gain-of-function resulted in an increase in Pax2	
	ile the dominant negative ?RING construct resulted in decreased Pax2 expression. Taken
•	esults suggest that Siah ubiquitin ligase controls NIz2 protein stability and therefore indirectly
	gene expression in order to modulate timing of choroid fissure closure.
Supported by:	NIH Award: R01 EY027805

Primary Presenter / email:	Piedade, W. P. / wpe226@uky.edu	University of Kentucky
	Graduate Student	
Mentor / e-mail:	Famulski, J. K. / jakub.famulski@uky	.edu

	Poster Presentation #143
Abstract Title:	Fibroblast Growth Factor 19 Alters Parasympathetic Output of the Dorsal Motor Nucleus of the Vagus
Author(s):	J.B. Wean, Department of Physiology, U of Kentucky B.N. Smith, Departments of Neuroscience and Physiology, U of Kentucky
diabetes resear brain plays an of the brainstem of and humoral sig this information Fibroblast grow intracerebrover that FGF19's re for the observe FGF19 on action slices. Applicat in DMV neuron significant outwo hypothesis that	ording to the CDC, there are more than 30 million Americans living with diabetes. Although most the choice of the cube of the construction of the cube
Primary Preser	ter / email: Wean, J. B. / jordan.wean@uky.edu University of Kentucky

Mentor / e-mail:

Graduate Student Smith, B.N. / bnsmit4@email.uky.edu

Friday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

Poster Presentation #144		
Abstract Title:	Hyperalgesia in experimental autoimmune encephalomyelitis: mediation by astrocytes in the dorsal horn?	
	B. C. Shaw, Department of Physiology, U of Kentucky	
	S. Doolen, Department of Physiology, U of Kentucky	
Author(a):	R. R. Donahue, Department of Physiology, U of Kentucky	
Author(s):	C. M. Grachen, Department of Physiology, U of Kentucky	
	B. K. Taylor, Department of Physiology, U of Kentucky and Pittsburgh Center for Pain Research,	
	U of Pittsburgh, Pittsburgh, PA	
Abstract: Mult	iple sclerosis (MS) is a human neuroinflammatory disease, affecting millions of individuals	
worldwide. Abo	but half of all MS patients experience chronic pain, usually refractory to pharmacotherapy. Despite	
this, we know little of the mechanisms underlying MS pain. Our recent publication in PAIN established a dose-		
dependent correlation between fingelimed on S1DD against, and reduction of experimental autoimmune		

this, we know little of the mechanisms underlying MS pain. Our recent publication in PAIN established a dosedependent correlation between fingolimod, an S1PR agonist, and reduction of experimental autoimmune encephalomyelitis (EAE)-induced hyperalgesia. Here we extend this correlative data into a more causative description of the spinal mechanisms of EAE-induced hyperalgesia with a focus on a key cellular mediator of chronic pain in many animal models: astrocytes. We induced a mild form of EAE using a female C57BL/6, MOG35-55 model. We found that dorsal horn astrocytes robustly express plasmalemma S1PR1, a key target for the treatment of the pain of EAE. We injected L-alpha-aminoadipate (LAA, 100 nmol, intrathecal) on Day 11 at peak hyperalgesia to selectively ablate astrocytes and then tested mechanical and cold hyperalgesia over 24 hours. Preliminary qualitative analysis of GFAP immunohistochemistry strongly suggests that LAA robustly decreased GFAP immunoreactivity at 24 hours. LAA reduced mechanical (two-way ANOVA F1, 10 = 574, p < 0.0001) and cold (two-way ANOVA F1, 10 = 21) hyperalgesia in EAE mice. We are the first to show that LAA reduces mechanical hyperalgesia in EAE mice and that LAA reduces cold hyperalgesia in any model of neuropathic pain. These data suggest that astrocytes are key mediators of EAE-induced hyperalgesia. Current studies are in progress to quantify LAA-induced astrocyte ablation, and to determine astrocytic signaling pathways in EAE.

Supported by:	NIH T32GM11	8292 to BCS, NIH K01DA031961 to SD, and I	NIH R01NS62306 to BKT.
Primary Preser	nter / email:	Shaw, B. C. / benjamin.shaw@uky.edu Graduate Student	University of Kentucky
Mentor / e-mai	l:	Taylor, B. K. / brad.taylor@uky.edu	

	Poster Presentation #145
Abstract Title:	RNA integrity is associated with weakened expression of genes in the lysosomal and mitochondrial pathways in human cadaver brain tissue samples.
Author(s):	E.S. Johnson, Department of Pharmacology and Nutritional Sciences, U of Kentucky K.E. Hargis-Staggs, Department of Pharmacology and Nutritional Sciences, U of Kentucky E.M. Blalock, Department of Pharmacology and Nutritional Sciences, U of Kentucky
storage duratio measurements the RNA integr degradation ac though relative certain biologic transcriptional different labora studies in that p studies have be for a stronger of show strong ag genes revealed mitochondrial a	A degradation can be influenced by many factors (e.g., post-mortem interval, sample preparation, on, etc). The degree to which RNA is degraded prior to quantification affects downstream (e.g. situ hybridization, RT-PCR, transcriptional profiling). In fact, Agilent Technologies introduced ity number (RIN; 1 being the worst to 10 being the best) to help quantify and standardize cross samples and labs. Recent studies have shown RIN influences mRNA expression levels, ly little work has been done to determine whether RNA damage is random or more prevalent in cal pathways. In previous work, we compared RIN values and gene expression from two profile studies of brain tissue to determine whether RNA degradation was consistent across stories and samples, and targeted towards specific categories of genes. However, one of the prior comparison was statistically underpowered and more statistically powerful and balanced een reported. Therefore, we modified our approach and exchanged the statistically weaker study one. We tested to see if the two studies with strong and balanced statistical discovery power would greement with regard to which genes were targeted by poor RNA quality, and whether that set of d consistent pathways of effect. We report a consistent influence of RIN on genes associated with and protein-degrading processes, suggesting that pockets of subcellular RNA close to mitochondria is may be more adversely affected during the course of RNA degradation in human brain tissue.
Supported by: Primary Preser	NIH NIA AG037868

Primary Presenter / email:	Johnson, E. S. / ejo226@uky.edu Graduate Student	University of Kentucky
Mentor / e-mail:	Blalock, E.M. / eric.blalock@uky.edu	l

Poster Presentation #146			
Abstract Title:	Treatment of Lafora Epilepsy by a Therapeutic Enzyme that Degrades Lafora Bodies		
	M. K. Brewer, Dept of Molecular and Cellular Biochemistry, U of Kentucky		
	A. Uittenbogaard, Dept of Molecular and Cellular Biochemistry, U of Kentucky		
	G. Austin, Dept of Molecular and Cellular Biochemistry, U of Kentucky		
	A. DePaoli-Roach, Indiana U, Indianapolis, IN		
Author(a)	P. Roach, Indiana U, Indianapolis, IN		
Author(s):	T. McKnight, Valerion Therapeutics, Concord, MA B. Hodges, Prothelia Inc., Milford, MA		
	J. McCarthy, Department of Physiology, U of Kentucky		
	J. Pauly, College of Pharmacy, U of Kentucky		
	D. Armstrong, Valerion Therapeutics, Concord, MA		
	M. S. Gentry, Dept of Molecular and Cellular Biochemistry, U of Kentucky		
Abstract: Lafo	bra disease (LD) is one of the most severe forms of progressive myoclonic epilepsy (PME). LD		
	ests with seizures in adolescence, followed by rapid neurological deterioration, increasingly		
	ptic episodes, and dementia. Death typically occurs ten years after onset. LD is caused by		
mutations in th	he EPM2A and EPM2B genes, encoding the glycogen phosphatase laforin and the E3 ubiquitin		
ligase malin, re	ligase malin, respectively. LD is distinguishable from other PMEs by cytosolic polyglucosan inclusions known as		
	(LBs) in neurons, heart, skeletal muscle, and other tissues. Among the PMEs, LD is uniquely		
	disorder of glycogen metabolism. Since eliminating cerebral glycogen synthesis rescues LD in		
	s, therapies are being developed to target LBs and glycogen. We took an enzymatic approach to		
	n vivo, however, cell penetration remains a significant hurdle in the field of enzyme therapy. One		
	itilize antibody fragments to enable cellular uptake of the target enzyme. We fused a humanized		
	from systemic lupus erythematosus antibody 3E10 to pancreatic ?-amylase, an enzyme that		
	ades glycogen, to generate a fusion that both enters cells and degrades LBs (VAL-0417). We show reduces glycogen load in cell culture. We developed a novel protocol for purifying LBs from		
	EPM2B-/- mice and show that VAL-0417 degrades isolated LBs in vitro. Most importantly, we show		
	injections reduce glycogen load in vivo. VAL-0417 is a promising therapeutic for Lafora Epilepsy,		
	first drug to provide a significant clinical benefit.		
	NIH R01 NS070899 and P01 NS097197 to M S G E31 NS093892 to M K B and Valerion		
Supported by:	Therapeutics.		
Primary Preser	nter / email: Austin, G. / grant_austin@live.com University of Kentucky		
	Technician		
Mentor / e-mai	il: Gentry, M. S. / matthew.gentry@uky.edu		

13th Annual CCTS Spring Conference Friday, April 13, 2018 April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Annual Boor N opining Neuroscience Bay		
	Poster Presentation #147		
Abstract Title:	Cerebrovascular Pathology in Horse Brains		
Author(s):	T. Sudhakar, Paul Laurence Dunbar High School, Lexington, KY		
Aution(s).	E. Head, Sanders-Brown Center on Aging, U of Kentucky		
Abstract: Back	ground: As the most common form of dementia, Alzheimer's disease (AD) affects over 5.5 million		
Americans, and	40 million patients worldwide (Selkoe and Hardy, 2016). Though AD has been widely studied,		
there are still n	p preventative therapeutic targets in its earlier stages. Recent research has shown that		
cerebrovascula	r dysfunction may play a large role in the early pathogenesis of Alzheimer's disease, appearing in		
60% of AD pati	ents in addition to the appearance of plaques and tangles (Pimentel-Coelho and Rivest, 2012).		
This study used	a horse brain model to explore cerebrovascular pathology, as horses have not been explored in		
past research,	but may exhibit AD pathology such as amyloid-beta plaques (Youssef et al., 2016). It was		
hypothesized the	nat the development and significance of cerebrovascular alterations would positively correlate with		
	animal. Methods: Eight horses ranging in age from 16-32 years were studied. Tissue from the		
•	prefrontal cortex and hippocampus was collected in 50 ?m slices using a Vibratome. The tissue was run in a		
Prussian Blue study, along with human AD+ tissue, to identify and quantify microbleeds. Results & Conclusions:			
The hypothesis was disproved in the prefrontal-cortex tissue of the horse brains (r= -0.049; p=0.909), but upheld			
in the hippocampus tissue (r=0.654; p=0.079), indicating that age is a factor in the quantity of microbleeds in the			
	Exploring this relationship between cerebrovascular pathology and age-related cognitive		
impairment cou	Id lead to a preventative therapeutic target for AD.		
Supported by:			

Primary Presenter / email:	Sudhakar, T. / teja.sudhakar23@gmail.com School High School Student	Paul Laurence Dunbar High
Mentor / e-mail:	Head, E. / Elizabeth.Head@uky.edu	

13th Annual CCTS Spring Conference Lexington Convention Center Friday, April 13, 2018 34th Annual BGSFN Spring Neuroscience Day

.	Annual Door N opining Neuroscience Day	
	Poster Presentation #148	
Abstract Title: Act	tivation of the Reward Circuit by Social Play in Adolescent Rats	
M	Z. Slusarewicz,	
	R. Hammerslag,	
Author(s): E. I	D. Denehy,	
D. '	Vazquez-Sanroman,	
	T. Bardo	
	teraction, particularly play behavior, in adolescents is widely regarded as critical for the proper	
	cial and cognitive function. In animal models, isolation during adolescence leads to elevated	
	vior. This may be due to the connection between play and the reward system. Regions of the	
	e control and direction of reward behavior, like the prefrontal cortex (PFC) and nucleus	
	are necessary for the execution of play behavior. Thus, the activation of these regions may	
	of play. In order to investigate play-induced activation in these regions, we used cFos, a gene	
	g activation, to label recently activated neurons. Briefly, we placed adolescent male rats	
	nto a chamber, either alone or with a partner, and recorded their behavior. After 15 minutes of	
	e trial ended and rats were returned to their home cages for 40 minutes before they were	
	erfused transcardially with paraformaldehyde. We then used immunohistochemistry to analyze	
cFos-positive cells in the PFC (ventromedial and dorsomedial) and NAc (core and shell). Play increased		
activation within the NAc (core and shell) and dorsomedial PFC, but not in the ventromedial PFC. These results		
add to the growing body of work suggesting that the reward circuit serves a critical role in social play. Further		
	e whether there are long-term changes in these regions following adolescent play that could be	
protective against d	•	
Supported by: NIF	H Award: DA041755 and Dwoskin T32	
Primary Presenter /	<pre>/ email: Slusarewicz, M. Z. / megan@slusarewicz.com University of Kentucky Undergraduate Student</pre>	

Mentor / e-mail:

Hammerslag, L. R. / I.hammerslag@uky.edu

Friday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #149		
Abstract Title:	Acute Mitochondrial Dysfunction after Mild Traumatic Brain Injury (mTBI) and Implications for Repeated mTBIs		
Author(s):	 W.B. Hubbard, Spinal Cord and Brain Injury Research Center, Department of Physiology, Department of Neuroscience, U of Kentucky B. Joseph, Spinal Cord and Brain Injury Research Center, U of Kentucky M. Spry, Spinal Cord and Brain Injury Research Center, U of Kentucky H. Vekaria, Spinal Cord and Brain Injury Research Center, U of Kentucky K.E. Saatman, Spinal Cord and Brain Injury Research Center, Department of Physiology, U of 		
	Kentucky P.G. Sullivan, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, Lexington Veterans' Affairs Medical Center, U of Kentucky		
	traumatic brain injuries (mTBIs), accounting for over 80% of TBIs, can cause cognitive and		
	airment. While it is known that mTBI does not cause widespread neuronal death, the mechanisms		
	rological impairment and increased cellular susceptibility to subsequent head impacts are		
	xamine mitochondrial bioenergetics following mTBI, we employed a mouse model of closed head		
	examine mitochondrial respiration in isolated mitochondria after mTBI. A single CHI was produced cally controlled impact device with a silicone tip at midline to model a bilateral diffuse injury.		
	unction was assayed from ventral (including entorhinal) cortex and hippocampus homogenates		
	24, 48, and 96 hours post-injury (n=6/group). Oxygen consumption rates (OCRs) were measured		
	from isolated mitochondria using a Seahorse XF24 Flux Analyzer. Ventral cortex-derived mitochondria after CHI		
exhibited a dec	crease in State III (ADP-mediated) OCRs at 24 and 48 hours post-injury (p<0.01). Conversely,		
State III respiration OCRs were significantly decreased in hippocampal mitochondria of the CHI group compared			
to sham at 48 hours (p < 0.01) but not 24 hours post-injury. No significant differences were observed at 6h or 96h			
post-injury. In addition, we looked at the influence of repeated CHI on mitochondrial bioenergetics and observe			
	nTBI prolongs mitochondrial dysfunction and produces mitochondria-derived oxidative stress		
	ngle CHI. This study establishes that mTBI results in early mitochondrial dysfunction which has temporal characteristics. Future directions will include targeting this dysfunction with novel		
therapeutics af			
· · ·	NSF EPSCoR Seed Grant 4978/111315, VA Merit Award 1I01BX003405-01A1 and Kentucky		
Supported by:	Spinal Cord and Head Injury Research Trust (KSCHIRT) Grant 14-13A.		
Drimory Droco	ator / amaily Hubbard WP / bradbubbard@uky adv _ University of Kantucky		


 Primary Presenter / email:
 Hubbard, W.B. / bradhubbard@uky.edu
 University of Kentucky

 Postdoctoral Fellow
 Saatman, K.E. & Sullivan, P.G. / patsullivan@uky.edu

	or Alinda Boorn opinig noarocolonico Bay
	Poster Presentation #150
Abstract Title:	Nanoparticle Delivery of microRNAs Targeting Inflammation in Traumatic Brain Injury
Author(s):	 P. Prajapati, Spinal Cord and Brain Injury Research Center, U of Kentucky W. Wang, Sanders-Brown Center on Aging, U of Kentucky J.E. Springer, Department of Neuroscience, Spinal Cord and Brain Injury Research Center, U of Kentucky
acute post-inju inflammatory M has been docu macrophages/r reparative M2 (miRNAs) that expression/act TBI. Both miRI inflammatory c TRAF6 expres TRAF6 expres density array a 6 and NOS2 an promising, how signaling. Rega	Imatic brain injury (TBI) is a leading cause of long-term impairments in higher cognitive function. At ry time points, functionally diverse subsets of pro-inflammatory M1 and reparative anti- 12 microglia and macrophages contribute to secondary injury pathology and repair, respectively. It mented that M2-like macrophages/microglia peak at 5-7 days and then decline, while M1-like microglia persist. Therefore, modulating the inflammatory environment to favor expression of the phenotype has potential to limit secondary injury. One approach is the use of specific microRNAs inhibit the pro-inflammatory M1 phenotype and/or promote anti-inflammatory M2 ivity. We recently found that miR-146a and miR-223 levels in the rat hippocampus are altered in NAs play a significant role in regulating microglia/macrophage polarization and/or expression of ytokines. MiR-146a down-regulates pro-inflammatory NF-kB signaling by inhibiting IRAK1 and sion. We now report that peptide-based nanoparticle delivery of miR-146a inhibits IRAK1 and sion in LPS treated BV-2 microglia cells and in rat hippocampus 48 hr following TBI. TaqMan low- nalysis revealed that miR-146a delivery resulted in significant down-regulation of the M1 genes IL- nd up-regulation of the M2 genes IL-4 and Arg1. These initial experiments examining miR-146a are vever miR-223 may prove more effective as it targets a broader scope of pro-inflammatory ardless, these results demonstrate that nanoparticle delivery of miRNAs targeting inflammatory vays may direct phenotypic expression of M1 and M2 microglia/macrophage states and limit pro- ignaling after TBI.
Supported by:	KSCHIRT Trainee Award
Primary Prese	nter / email: Prajapati, P. / paresh.prajapati@uky.edu University of Kentucky

Primary Presenter / email:	Prajapati, P. / paresh.prajapati@uky.edu Postdoctoral Fellow	University of Kentucky
Mentor / e-mail:	Springer, J. E. / jspring@uky.edu	

	Poster Presentation #151
Abstract Title:	Targeting neuroinflammation in the context of Alzheimer's disease with comorbid vascular pathology
Author(s):	 D. J. Braun, Sanders-Brown Center on Aging, U of Kentucky D. M. Wilcock, Sanders-Brown Center on Aging, U of Kentucky L. J. Van Eldik, Sanders-Brown-Center on Aging, U of Kentucky
than 20% of cas major targetable therefore tested comorbid vascu placed on vitam vascular dysfun treatment with M cognitive and no learning in the r alpha, and inter limited utility in t pathologies. The	ground: Estimates of "pure" Alzheimer's disease (AD) indicate that such patients make up less ses. Of the comorbidities present in most patients, vascular pathology is the most common. One e point of intersection between vascular and amyloid pathology is neuroinflammation, and we our brain-penetrant anti-inflammatory small molecule, MW151, in a mouse model of AD with lar pathology. Methods: AD mice (B6.Cg-TgAPPswe/PS1dE9) and wildtype littermates were in B and folate-deficient diet for 8 weeks to induce hyperhomocysteinemia (HHcy) and associated ction. Mice were then recovered on normal chow for 2 weeks, before beginning 2 weeks of <i>IW</i> 151 (5 mg/kg, I.P., daily). In the final week of treatment, mice underwent behavioral testing for on-cognitive deficits. Results: Treatment with MW151 normalized hippocampal-dependent spatial adial arm water maze, associated primarily with a reduction of macrophage inflammatory protein 1 leukin-33 levels in the hippocampus. Conclusions: Methods of amyloid reduction alone may have the common clinical condition of an individual presenting with multiple dementia-inducing e present study highlights the potential of targeting dysregulated neuroinflammation in the context -type and vascular injury.
Supported by:	Weston Brain Institute Fellowship

Primary Presenter / email:	Braun, D. J. / david.braun1@uky.edu Postdoctoral Fellow	University of Kentucky
Mentor / e-mail:	Van Eldik, L. J. / linda.vaneldik@uky.ec	lu

13th Annual CCTS Spring ConferenceFriday, April 13, 2018Lexington Convention Center34th Annual BGSFN Spring Neuroscience Day

	34 Annual DOOLN Opining Neuroscience Day	
	Poster Presentation #152	
Abstract Title:	Influence of drug intervention on acute PS in young and aged rats	
Author(s):	K. Hargis-Staggs, Department of Pharmacology and Nutritional Sciences, U of Kentucky S. Qutubuddin, Department of Pharmacology and Nutritional Sciences, U of Kentucky J. Popovic, Department of Pharmacology and Nutritional Sciences, U of Kentucky E. M. Blalock, Department of Pharmacology and Nutritional Sciences, U of Kentucky	
E. M. Blalock, Department of Pharmacology and Nutritional Sciences, U of Kentucky Abstract: Psychosocial stress (PS) occurs when a non-noxious stimulus (e.g. loss of a loved one or solitary confinement) provokes a physiological response and has the potential to negatively affect numerous systems (e.g., corticosterone level, sleep, cognition). Prior studies from our lab have investigated the consequences of PS on deep sleep and cognition through aging. Young animals have demonstrated a sensitivity to stress, in particular having a poor probe trial performance. Compared to young, aged animals demonstrated cognitive deficits, but were interestingly hyporesponsive to acute stress. Because deep sleep is important for cognition and decreases relative to age, our lab chose to investigate the influence of a pharmacological intervention on the stress response in young and aged animals. We hypothesized that a deep sleep promoting drug (e.g., Gaboxadol) would improve cognition. To test this, young (3 mos) and aged (19 mos) male Fischer 344 rats were divided into four different groups: control (vehicle and drug) and stress (vehicle and drug). Half of the animals underwent acute restraint stress (3h/ day, 4 days) prior to all animals being trained in the MWM. Behavior, activity, and plasma hormone levels were used to determine Gaboxadol's influence on the stress response. In line with our lab's previous work, young animals suffered stress-induced cognitive deficits. The drug improved cognition in these animals, while maintaining no effect on cognition in the absence of stress. Aged animals were hyporesponsive to stress, even in the presence of Gaboxadol. Taken together, Gaboxadol could be used to improve stress resiliency in young.		
Supported by: Primary Preser	NIH NIA AG037868 NIH T32 AG057461 Inter / email: Hargis-Staggs, K. / keharg2@uky.edu University of Kentucky Postdoctoral Fellow Postdoctoral Fellow	

Mentor / e-mail:

Blalock, E. M. / eric.blalock1@gmail.com

13th Annual CCTS Spring Conference Lexington Convention Center Friday, April 13, 2018 34th Annual BGSEN Spring Neuroscience Day


	54 Annu	iai bushing neuroscience Day	
Poster Presentation #153			
Abstract Title:	The role of argin	ase in immunomodulatory neurotherapies	
		SCoBIRC and Physiology, U of Kentucky	
		RC and Physiology, U of Kentucky	
Author(s):		RC and Physiology, U of Kentucky	
/ (01(0))		bBIRC and Physiology, U of Kentucky	
	-	RC and Physiology, U of Kentucky	
		BIRC and Physiology, U of Kentucky	
		se CNS macrophage activation that has two prominent subsets. There are M1,	
•	, , ,	nd M2, anti-inflammatory macrophages. M1 macrophages are predominantly in	
		nd typically cause neurotoxicity. M2 macrophages are in the second phase and	
		nation. After both human and rodent spinal cord injuries, M1 predominate.	
	Research has shown that driving the inflammatory phase towards M2 activation enhances recovery but the		
	underlying basis of the improvement is not yet fully comprehended. Discerning the mechanism of M2-mediated		
	repair is vital since macrophages express great plasticity and adapt their phenotype in accordance with their microenvironment. Arginase-1 (Arg1) is a hallmark of M2 phenotypic expression and has a distinct modulating		
	characteristic in tissue repair. We therefore hypothesize that the reparative effects of M2 macrophages are dependent on the production of Arg1. To test our hypothesis we generated macrophage-specific arginase		
	knockout animals. We demonstrate selective knock-down of Arg1 in infiltrating macrophages after SCI in our		
		stochemical and functional assays. We confirmed these results with in vitro	
analyses. Further, we observed that the efficacy of an immunomodulatory therapy that reduced M1-mediated			
neurotoxicity is dependent upon arginase expression. Understanding the anti-inflammatory mechanism of			
macrophage activation can offer novel therapeutic strategies for patients suffering from spinal cord injuries.			
Supported by:	R01NS091582		
Primary Prese	enter / email:	McFarlane, K. M. / katelynmcfarlane@uky.edu University of Kentucky	
-		Technician	
Mentor / e-ma	ail:	Gensel, J. C. / gensel.1@uky.edu	

Mentor / e-mail:

	34 Annual Door N opining Neuroscience Day	
	Poster Presentation #154	
Abstract Title:	The Effect of Sex on Spinal Cord Injury Recovery and Pain	
	T. E. Otto, Department of Physiology, SCoBIRC, U of Kentucky	
	W. M. Bailey, Department of Physiology, SCoBIRC, U of Kentucky	
	R. R. Donahue, Department of Physiology, U of Kentucky	
Author(s):	A. Veldhorst, Department of Physiology, SCoBIRC, U of Kentucky	
	B. Zhang, Department of Physiology, SCoBIRC, U of Kentucky	
	B. K. Taylor, Department of Physiology, U of Kentucky	
	J. C. Gensel, Department of Physiology, SCoBIRC, U of Kentucky	
	impact of physiological factors, including sex, on the immune response after spinal cord injury	
	Il understood. With recent demographic shifts towards a more equal proportion of male and female	
SCI patients it becomes increasingly important to identify these differences. Emerging evidence has identified		
potentially sexually dimorphic underlying mechanisms of behavioral recovery and pain sensitization after SCI. In		
	ropathic pain, pain development is predominantly driven by peripheral inflammation in females and	
intraspinal inflammation in male. We are characterizing differences in peripheral and intraspinal immune cells in		
	ale mice after SCI. In order to (further) probe these differences after SCI we tested the therapeutic	
efficacy of the targeted pharmacological agents pioglitazone (PIO) for peripheral and Azithromycin (AZM) for		
	nunomodulation. While there was a trend towards greater behavioral recovery in females there was	
no difference in overall anatomical recovery or pain development between males and females after SCI. Further,		
AZM reduced pain sensitization equally in males and females. However, PIO had a significantly greater antiallodynia effect in females compared to males after SCI. This supports our hypothesis that underlying		
mechanisms of SCI related pain is different between sexes. Moving forward, these results emphasize the		
importance of considering physiological factors when identifying clinically relevant treatments after SCI.		
Supported by:	NIH award: RO1NS091582.	
	·····	

Primary Presenter / email:	Otto, T. E. / tayloreotto@gmail.com Technician	University of Kentucky	
Mentor / e-mail:	Gensel, J. C. / gensel.1@uky.edu		

54" Annual BOSEN Spring Neuroscience Day		
Poster Presentation #155		
Abstract Title:	Promoting a targeted Neuroprotective Immune Response	
Author(s):	 W. M. Bailey, Department of Physiology, SCoBIRC, University of Kentucky K. D. Foust, Department of Neuroscience, The Ohio State University Wexner Medical Center P. Chakrabarty, Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida J. C. Gensel, Department of Physiology, SCoBIRC, University of Kentucky 	
Supported by:	Wings for Life Spinal Cord Research Foundation and the University of Kentucky	
Primary Prese	nter / email: Bailey, W. M. / william.bailey@uky.edu University of Kentucky Technician	

Mentor / e-mail:

Gensel, J. C. / gensel.1@uky.edu

	Annual Boor N opining Neuroscience Bay
	Poster Presentation #156
Abstract Title:	Therapeutic Window of Intervention for Pioglitazone Following Traumatic Brain Injury
Author(s):	 M. L. Spry, Spinal Cord and Brain Injury Research Center, U of Kentucky J. L. Gooch, Spinal Cord and Brain Injury Research Center, U of Kentucky A. L. Cloud, College of Medicine, U of Kentucky W. B. Hubbard, Spinal Cord and Brain Injury Research Center, U of Kentucky H. Vekaria, Spinal Cord and Brain Injury Research Center, U of Kentucky P. G. Sullivan, Spinal Cord and Brain Injury Research Center, U of Kentucky
approved. Our g has neuroproted mitoNEET. Rec the therapeutic received a seve 48 hours post-in septal region an at 1 and 3 hours treated animals cortex during St In both the Hipp initiated at 12 ho lab where mitoo there is potentia	matic brain injury, (TBI) is a serious health concern for which no pharmacological treatment is group has demonstrated that Pioglitazone, an FDA approved compound used to treat diabetes, ctive properties following TBI and spinal cord injuries via interaction with the mitochondrial protein, ently, we determined the optimal dosing (20 mg/kg) of Pioglitazone and in this study we examine window of opportunity for Pioglitazone administration following TBI. Adult C57B/6 male mice are TBI followed by initiation of Pioglitazone treatment at 1, 3, 6, 12, 18 or 24 hours post-injury. At njury, animals were euthanized and mitochondria was isolated from the cortex, hippocampus and no oxygen consumption rates (OCRs) were assessed. Results showed that initiating pioglitazone is post-injury did not produce an increase in mitochondrial bioenergetics compared to vehicle. However, there was a significant increase in OCR in mitochondria extracted from ipsilateral tate III and State V respiration when treatment was initiated at 6, 12, 18 and 24 hours post-injury. bocampus and Septal regions there was an increase in respiration when the treatment was ours that varied across respiration states. These results in conjunction with previous work in our chondrial respiration was rescued when treatment was initiated 15 minutes post injury indicate that ally a biphasic, extended treatment window in which pioglitazone can be administered to maintain omeostasis after TBI.
Supported by: Supported by: Su	
Primary Presen	
Mentor / e-mail:	

	Poster Presentation #157
Abstract Title:	The role of non-coding RNA in Corneal Nerve Regeneration Following Ocular Surface Injury
Author(s):	 J. Cho, Department of Ophthalmology and Visual Sciences, U of Kentucky N. A. Bell, Department of Ophthalmology and Visual Sciences, U of Kentucky G. J. Botzet, Department of Ophthalmology and Visual Sciences, U of Kentucky V. Rashidi, Department of Ophthalmology and Visual Sciences, U of Kentucky R. J. C. Albuquerque, Department of Ophthalmology and Visual Sciences, U of Kentucky
nerve (V) and t the capability of underlying med mice and the ro nerve injury red Alu-like B2 RN multiple neurot accumulates d regeneration. I between Dicer the involvemen showed faster	hary sensory neurons innervating the cornea reside in the ophthalmic branch (V1) of the trigeminal their cell bodies are surrounded by satellite glia cells (SGCs) in the trigeminal ganglion (TG). While of corneal sensory nerves to regenerate following peripheral injury has been well demonstrated, the chanism of this process remains to be elucidated. In this study, corneal nerve injury was induced in one of Alu RNA, non-coding RNA, in axonal regeneration was investigated. First, we found that duced production of Dicer1, a microRNA (miRNA)-processing enzyme, but elevated the levels of A in TG of mice. In addition, an in vitro study showed that B2 RNA stimulates the SGCs to produce trophic factor genes. Taking advantage of Dicer1 dysmorphic (Dicer1 dys) mice in which B2 RNA ue to inactivated Dicer1, we tested whether abundant B2 RNA levels could enhance the axonal interestingly, even in the absence of injury, there was a difference in the density of corneal nerves 1 dys mice and their littermates. Dicer1 dys mice had greater nerve density in the cornea, indicating not of excess B2 RNAs in neural growth. Moreover, in terms of regeneration, Dicer1 dys mice axonal regeneration compared to their littermates. These findings suggest that injury-induced B2 ion is associated with peripheral nerve regeneration, which could be a potential therapeutic agent

to enhance the axonal regeneration.

Supported by: University of	Kentucky CTSA grant KL2 TR001996C (UL1TR001998).
Primary Presenter / email:	Cho, J. / jooyoung.cho@uky.edu University of Kentucky Technician
Mentor / e-mail:	Albuquerque, R. J. C. / rjalbu2@uky.edu

	Poster Presentation #158	
	Considerations in repetitive activation of light sensitive ion channels for long-term	
Abstract Title:	studies: channel rhodopsin in the drosophila model	
	C. Hermanns, Department of Biology, U of Kentucky M. Mattingly, Department of Biology, U of	
Author(s):	Kentucky J. Higgins, Department of Biology and College of Nursing, U of Kentucky C. Malloy,	
	Department of Biology, U of Kentucky R. L. Cooper, Department of Biology, U of Kentucky	
	nervous systems to function properly, the efficacy of such synapses should be finely regulated and	
	espond to changing circumstances and requirements. Too high or too low a synaptic output results	
	e communication to target cells. This is most apparent during development and maturation. As the	
	aptic cells increases dramatically, a matched increase of neurotransmitter release is required	
	ity of postsynaptic cell to the transmission. On the other hand, the nerve terminals also grow	
	size and output, and continuously show different types of remodeling to maintain proper synaptic	
output throughout the life of the animal. We are addressing homeostatic regulation in synaptic function at the		
	ila NMJ by over and under excitation of the motor nerve terminal and muscle by the use of	
optogenetics throughout larval development. The biological significance and aim of this study is to demonstrate		
	ng particular neurons or targets of neurons, over time, and throughout development, one will have	
	stand the dynamic nature of forward and retrograde communication in regulating synaptic formation	
	ce. Optogenetics has provided a tool to use but there are limitation in the extent of activation and	
inhibition which needs careful consideration. We have noted long term (minutes) unexpected effects (i.e., neuron		
refractory in electrical excitability) from only 10 sec activation of channel rhodopsin (ChR-XXL) targeting motor		
neurons (D42 expression). Paralysis and inability to eat are considerations for long term neural developmental		
studies when r	nanipulating neurons and muscles.	
Supported by:	University of Kentucky Office of Undergraduate Research	

11 , ,	, 3	
Primary Presenter / email:		niversity of Kentucky
	Undergraduate Student	
Mentor / e-mail:	Cooper, R. L. / robinlewiscooper1@gmail.	com

13th Annual CCTS Spring Conference Erriday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #159	
Abstract Title:	Examining Temporary Loss of Sensory Perception Over Development in Altering Long- Term Function and Neural Circuitry Effects Behavioral Responses	
Author(s):	T. Donovan, C. Ballinger Boone, E. Somasundaram, C. Malloy, R. L. Cooper	
	e Hubel and Wiesel (1963) the effects of sensory deprivation in a developing CNS has been a	
	nining critical periods and the effects on neural circuitry. The ability to temporarily enhance or	
	cal activity in sensory neurons at various stages in development provides cues in understanding	
	the nervous system. Temporarily altering activity of presynaptic neurons can have effects on	
	d function of target cells subsequent to the experimental manipulations. Thus, altered neural	
	anifest themselves in asymptomatic behaviors to standard sensory cues. We are addressing these	
topics in the larval Drosophila model over embryonic and larval development. In using genetic approaches, we		
are controlling activity in sensory systems and examining eating and locomotive behaviors as well as tactile sensory assays. In addressing the effects on neural architecture to correlate with the neural activity conditioning		
paradigms, sensory endings as well as projections into the CNS are being investigated. We will report on the		
behavioral responses to tactile stimuli throughout larval develop during various experimental manipulations. We		
	ng how a previously deprived neural circuit can regain the ability for normal behavior, anatomical	
	unction, providing a novel understanding of the understanding synaptic plasticity within defined	
	This relates to various disease states as well as to exomedicine in the terms of development within	
weightless of s	pace and as well as re-exposure to gravity.	
	KY Sci. and Eng. FDN, KSEF-3712- RDE-019 (RLC); University of KY Office of Undergraduate	
Supported by:	Research; Deutscher Akademischer Austausch Dienst (DAAD) German Academic Exchange	
	Service. RISE - Program, Research Internships in Science and Engineering (KW).	
Primary Preser		
	Undergraduate Student	
Mentor / e-mai	I: Cooper, R. L. / robinlewiscooper1@gmail.com	

	Poster Presentation #160		
Abstract Title:	The Effects of Bacterial Endotoxin on Neural Circuits in a Drosophila Model		
	Z.Paneitz, Department of Biology, U of Kentucky		
	O. Istas, Department of Biology, U of Kentucky		
	A. Greenhalgh, Department of Biology, U of Kentucky		
	W. Casto Jr, Department of Biology, U of Kentucky		
	S. Gilbert, Department of Biology, U of Kentucky		
	P. Katta, Department of Biology, U of Kentucky		
	A. Amaya, Department of Biology, U of Kentucky		
	G. Conrad, Department of Biology, U of Kentucky		
Author(s):	O. Criswell, Department of Biology, U of Kentucky		
	S. Hieneman, Department of Biology, U of Kentucky J. Middleton, Department of Biology, U of Kentucky		
	J. Murphy, Department of Biology, U of Kentucky		
	C. Ordono, Department of Biology, U of Kentucky		
	H. Roach, Department of Biology, U of Kentucky		
	H. Thornberry, Department of Biology, U of Kentucky		
	M. McNabb, Department of Biology, U of Kentucky		
	L. L. Byrd, Department of Biology, U of Kentucky		
	R. L. Cooper, Department of Biology, U of Kentucky		
Abstract: The	bacterial endotoxins lipopolysaccharides (LPS) are known to have direct effects on synaptic		
transmission a	t neuromuscular junctions in some invertebrates and mammals. Generally, LPS increases Ca2+		
loading and ra	ndom fusion of synaptic vesicles resulting in enhanced transmitter release in a sporadic nature. In		
	nhanced evoked release, but the effects have been known to vary depending on the synaptic		
	The effects of sepsis are complex from immunological responses to the direct actions of LPS on		
	ns, the effects of having bacterial sepsis and being treated can have long term effects in neural		
function and mobility. We tested the effect of LPS endotoxin on two different neural circuits in larval Drosophila as			
	ism. One involved with locomotion and one with an eating assay. Larvae of blow flies, which are		
used as therapy for debriding dead tissue in wound care, are exposed to bacterial endotoxins and few studies			
	have investigated the actions of forms of LPS endotoxins on therapeutic blowflies to assess survival and		
	unction. Larvae of Drosophila melanogaster (24 to 48 hours) were investigated in their locomotion		
	ction. Food tainted with 100 μ g/ml and 500 μ g/ml of LPS from two common strains (Pseudomonas		
aeruginosa and Serratia marcescens) were used. 24-hour exposure with LPS did not show an altered function with either assay for Drosophila. We are now examining longer exposure times. The results of these studies will			
with either ass	ay for Drosophila. We are now examining longer exposure limes. The results of lifese studies will		

be presented.	, ,	
Supported by:	•	cellence-2014 Howard Hughes Medical Institute (Grant #52008116) awarded to the M Cassone, PI) & Dept of Biology, Univ. of KY student laboratory fees Bio199 and
Primary Presenter / email:		Paneitz, Z. / zopa222@g.uky.edu University of Kentucky Undergraduate Student
Mentor / e-mail:		Cooper, R. L. / robinlewiscooper1@gmail.com

Abstract Title: r L E Author(s): C	Poster Presentation #161 Pharmacological Identification of Muscarinic Receptor Subtypes in Drosophila nelanogaster J. F. Bhutto, Department of Biology, U of Kentucky E. V. Somasundaram, Department of Biology, U of Kentucky C. A. Malloy, National Institutes of Health, Bethesda, MD A. Omar, Department of Biology, U of Kentucky
Abstract Title: r L E Author(s): C	nelanogaster J. F. Bhutto, Department of Biology, U of Kentucky E. V. Somasundaram, Department of Biology, U of Kentucky C. A. Malloy, National Institutes of Health, Bethesda, MD A. Omar, Department of Biology, U of Kentucky
Author(s): C	E. V. Somasundaram, Department of Biology, U of Kentucky C. A. Malloy, National Institutes of Health, Bethesda, MD A. Omar, Department of Biology, U of Kentucky
ŀ	R. L. Cooper, Department of Biology, U of Kentucky
Drosophila melan sculpting the devi investigating the in muscarine, an act knock down type neurons, and all r motor circuit physi assessed. For se preparation. Isola the influence of ci EPSP activity will specific receptor	choline is the excitatory transmitter in sensory neurons as well as among neurons in the CNS of ogaster larvae. Activity of neurons and communicating with target neurons are important in eloping neural circuitry as well as maintaining established connections. We are interested in role of muscarinic subtypes in regulating sensory-motor circuits. We will report on the effect of etylcholine agonist, on the sensory-CNS-motor circuit. Genetically modified lines will be used to A and type C muscarinic receptors in different sets of neurons: cholinergic neurons, motor neurons. A pharmacological approach will be taken in order to assess behavioral and sensory biology changes in the experimental groups. For behavior, locomotion and feeding will be nsory-motor circuit physiology, we will test the modulation of neural circuits in an open ating the CNS in this preparation allows for examination of modulation of motor activity without onfounding variables. A stimulating electrode will be used to activate a sensory neuron, and be recorded by an electrode inserted in muscle 6. Information regarding the expression of subunits within the larval CNS is limited. This research will aid in identifying which muscarinic s are important in modulating sensory-motor circuits.

Primary Presenter / email:	Bhutto, U. F. / ubh222@uky.edu Undergraduate Student	University of Kentucky
Mentor / e-mail:	Cooper, R. L. / rlcoop1@uky.edu	

13th Annual CCTS Spring Conference Friday, April 13, 2018 April 13, 2018 Lexington Convention Center 34th Annual BGSEN Spring Neuroscience Day

	34 ^m Annual BGSFN Spring Neuroscience Day
	Poster Presentation #162
Abstract Title:	Activity Dependent Formation of a Somatosensory Circuit in Drosophila Melanogaster
Author(s):	E. V. Somasundaram, Department of Biology, U of Kentucky
	A. Omar, Department of Biology, U of Kentucky
Autrior(3).	C. A. Malloy, National Institutes of Health, Bethesda, MD
	R. L. Cooper, Department of Biology, U of Kentucky
	vity of developing neurons that make up neural networks impacts their formation and function.
	s as a result of activity-dependent competition between neurons in a developing neural circuit. The
	nat drive this plasticity are poorly understood and it is important to continue to address uncertainties
	inappropriate activity of a developing nervous system may lead to defects common in a variety of
	sorders. Here, we utilize the amenable model organism, Drosophila melanogaster, to address the
	ng activity of a developing somatosensory neural circuit on the formation and performance of the
	cally, we utilized an optogenetic approach whereby UAS-Chr2-XXL (Channelrhodopsin) flies or
	Halorhodopsin) flies were crossed with PPK-Gal4 (md IV neurons) flies in order to drive expression
	re opsins in this subset of sensory neurons in order to alter the activity of these neurons throughout
	nent. Following chronic manipulation of sensory neuronal activity, circuit performance was
	behavioral, physiological, and imaging approaches. Preliminary results suggest that inappropriate
	ass IV md neurons, throughout larval development, significantly alters larval locomotion at 3rd
	d changes their response to tactile touch. Future analysis will center on morphological assessment
	siological recordings to evaluate alterations in circuit function following manipulation of activity of
an entire sense	bry-CNS-motor somatosensory circuit.
Supported by:	Kentucky Science and Engineering Foundation (KSEF-3712-RDE-019) at the Kentucky Science
	and Technology Corporation (RLC) Institutional Development Award (IDeA) from the National
	Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103436 (MM & ND).
Primary Prese	
r filliary Flese	Undergraduate Student

Mentor / e-mail: Cooper, R. L. / robinlewiscooper1@gmail.com

13th Annual CCTS Spring Conference , April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day Friday, April 13, 2018

	Poster Presentation #163	
Abstract Title:	Investigating The Effects Of Homocysteine As An Agonist On Invertebrate Glutamatergic Synapses	
A. E. Stanback, Department of Biology, U of Kentucky E. Grau, Department of Biology, U of Kentucky A. Bradley, Department of Biology, U of Kentucky D. Cantrell, Department of Biology, U of Kentucky S. Eversole, Department of Biology, U of Kentucky C. Grachen, Department of Biology, U of Kentucky K. Hall, Department of Biology, U of Kentucky D. Hawthorne, Department of Biology, U of Kentucky C. Kinmon, Department of Biology, U of Kentucky P. Ortiz Guerrero, Department of Biology, U of Kentucky B. Patel, Department of Biology, U of Kentucky K. Samuels, Department of Biology, U of Kentucky G. Valdes, Department of Biology, U of Kentucky S. Wycoff, Department of Biology, U of Kentucky R. L. Cooper, Department of Biology, U of Kentucky		
Abstract: Hom	nocysteine (HCY) is produced in the central nervous system and can act as an excitatory	
transmitter acti	ivating both NMDA and non-NMDA glutamate receptors in mammalian models.	
Hyperhomocys the mechanism synapses of th preparations to evoked synapt have competed receptors after glutamatergics receptor profile Thus, HCY ma	steinemia (HHcy) in mammals can produce neurological deficits. Thus, understanding the details of the of action of HCY in model preparations could help in potential treatments. The glutamatergic e larval Drosophila and crayfish neuromuscular junctions (NMJs) are common model synaptic to assay pharmacological agents. HCY at a 100 mM did not have any consistent effect on altering ic transmission on either preparation. The expectations were that this high concentration would d for the endogenous evoked release of glutamate at the NMJ and desensitized the glutamate an initial rapid depolarization and repolarization. HCY does not have any acute action on the synapses of the larval Drosophila and crayfish neuromuscular junctions. The pharmacology e of these NMJ receptors are of a quisqualate subtype and not a kainite, AMPA or NMDA subtype. by not have any action on quisqualate glutamate receptor subtypes.	
Supported by:	Bio 446 class Dept. of Biology, Univ. of Kentucky	
Primary Prese	nter / email: Stanback, A. / alexandra.elizabeth@uky.edu University of Kentucky Undergraduate Student	
Mentor / e-mai	I: Cooper, R. L. / rlcoop1@uky.edu	

13th Annual CCTS Spring Conference Friday, April 13, 2018 April 13, 2018 Lexington Convention Center 34th Annual BGSEN Spring Neuroscience Day

	34" Annual BGSFN Spring Neuroscience Day	
	Poster Presentation #164	
Abstract Title:	Modulation of Habituation in the Heart rate Response in Crayfish	
	S. H. Wycoff, Department of Biology, U of Kentucky	
Author(s):	J. Nadolski, Department of Statistics, Benedictine U	
	R. L. Cooper, Department of Biology, U of Kentucky	
	tuation is an evolutionary adaptation where an organism learns to ignore a repeated stimulus that	
	w information. It is considered to be the simplest form of learning, and therefore key to	
•	he more complex forms of mental association. This project investigates several possible	
	the process of habituation: nicotine, serotonin (5-Ht), and low ambient temperatures. All three of	
these modulators were predicted to decrease the rate of habituation. These effectors were tested by repeatedly		
stimulating the crayfish in two ways to observe habituation in tail flips and heart rate (HR). The first was by		
tapping the crayfish on their tails with a glass stirring rod, then recording whether or not the crayfish tail flipped		
(Figure 1). The second method was exposing the crayfish to constant light for four hours, then cutting the lights		
for one second, but not observing tail flip behavior. Both procedures also employed impedance detectors to		
record the crayfish HRs during the experiment. Any change in HR in response to the trials was calculated. The		
first treatment had the following groups of subjects: control, low dose of nicotine, and high dose of nicotine. The		
second used control, saline injected, serotonin injected, and reduced temperature crayfish. The statistical analysis		
	s still underway, and therefore no conclusions can be drawn yet. However, preliminary evidence	
suggests that 5-	-HT is slowing down the rate of habituation, while nicotine increases the rate of habituation.	
Supported by:		

Primary Presenter / email:	Wycoff, S. H. / samuel.wycoff@uky.edu Undergraduate Student	University of Kentucky
Mentor / e-mail:	Cooper, R. L. / rlcoop1@uky.edu	

	Poster Presentation #165
Abstract Title:	Investigating Potential Mechanisms of Clove Oil (Eugenol) in Model Crustaceans
Author(s):	 C. Surydevara, Dept. of Biology, U of Kentucky E. Grau, Dept. of Biology, U of Kentucky A. Bradley, Dept. of Biology, U of Kentucky D. Cantrell, Dept. of Biology, U of Kentucky S. Eversole, Dept. of Biology, U of Kentucky C. Grachen, Dept. of Biology, U of Kentucky K. Hall, Dept. of Biology, U of Kentucky K. Hall, Dept. of Biology, U of Kentucky D. Hawthorne, Dept. of Biology, U of Kentucky C. Kinmon, Dept. of Biology, U of Kentucky P. O. Guerro, Dept. of Biology, U of Kentucky B. Patel, Dept. of Biology, U of Kentucky K. Samuels, Dept. of Biology, U of Kentucky G. Valdes, Dept. of Biology, U of Kentucky S. Wycoff, Dept. of Biology, U of Kentucky S. Colin, Swansea University Frankfurt am Main, Germany S. Colin, Swansea University, United Kingdom A. Ray, Aquaculture Research Center, Kentucky State University L. Fleckerstein, Aquaculture Research Center, Kentucky State University E. Piana, Dept. of Biology, U of Kentucky R. Cooper,
	ve oil contains eugenol as an active ingredient and is used a topical anesthetic in mammals to nd to anesthetize fish for short periods. The exact mechanisms in the effects are still not fully
understood. W	e examined the resulting activity of eugenol on neuronal activity in sensory and motor neurons in
	p crayfish (Procambarus clarkii), Blue crab (Callinectes sapidus) and Whiteleg shrimp (Litopenaeus n electrophysiological recordings. The neurogenic heart rate in the 3 species was also monitored

vannamei) with electrophysiological recordings. The neurogenic heart rate in the 3 species was also monitored along with behaviors and responsiveness to sensory stimuli while exposed to eugenol. The activity of the primary proprioceptive neurons was reduced at 200ppm and ceased at 400ppm for both crayfish and crab preparations when saline containing eugenol was directly applied to exposed sensory organs. Flushing out eugenol resulted in recovery in the majority of the preparations within 5 to 10 minutes. Administering eugenol to crayfish and crabs resulted in the animals becoming lethargic. Direct injection into the hemolymph was quicker to decrease reflexes and sensory perception but heart rate was still maintained. Eugenol at a circulating level of 400ppm decreased electromyogram activity in the claw muscle of crabs. Surprisingly, this study found no change in heart rate despite administering eugenol into the hemolymph to reach 400ppm in crabs or crayfish but shrimp preparations decreased. Our next focus is to determine the mechanism of action by intracellular recordings from neurons to support scant evidence of blocking voltage gated-sodium channels and thus decrease neuronal excitability.

support scart evidence of blocking voltage gated-sodium charmers and thus decrease neuronal excitability.		
Funded by stud	ent laboratory fees Dept. of Biology, Univ. of KY. The ca	ourse is neurophysiology
lab (Bio446, Bio	650). Deutscher Akademischer Austausch Dienst (DAA	AD) German Academic
Exchange Servi	ce, RISE Program (Research Internships in Science an	d Engineering) (KW);
Aquaculture Re	search Center, Kentucky State University (AR, LF) and	personal funds (RLC). We
thank Belize Aq	uaculture Ltd., Mile 4 Placencia Road, Stann Creek Dis	strict, Belize for providing
space and facili	ties to initiate this project. We thank Ms. Hyewon Coope	er and Ms. Carolyne
Holland for help	ing with recordings made in Belize.	
nter / email:	Suryadevara, S. / sriyanshi.surydevara@uky.edu	University of Kentucky
	Undergraduate Student	
l:	Cooper, R. L. / rlcoop1@uky.edu	
	Funded by stud- lab (Bio446, Bio Exchange Servi Aquaculture Re- thank Belize Aq space and facili	Funded by student laboratory fees Dept. of Biology, Univ. of KY. The clab (Bio446, Bio650). Deutscher Akademischer Austausch Dienst (DAA Exchange Service, RISE Program (Research Internships in Science ar Aquaculture Research Center, Kentucky State University (AR, LF) and thank Belize Aquaculture Ltd., Mile 4 Placencia Road, Stann Creek Dis space and facilities to initiate this project. We thank Ms. Hyewon Coope Holland for helping with recordings made in Belize. nter / email: Suryadevara, S. / sriyanshi.surydevara@uky.edu Undergraduate Student

	Poster Presentation #166	
Abstract Title:	Effects of Naltrexone on Alcohol and Nicotine Use in Female P Rats	
	U. Z. Hamid, Department of Psychology, U of Kentucky	
	S. E. Maggio, Department of Psychology, U of Kentucky	
Author(s):	M. A. Saunders, Department of Psychology, U of Kentucky	
	K. Nixon, Department of Pharmaceutical Sciences, College of Pharmacy, U of Kentucky	
	M. A. Prendergast, Department of Psychology, U of Kentucky	
	R. L. Bell, Department of Psychiatry, Institute of Psychiatric Research, Indiana U School of	
	Medicine	
	M. T. Bardo, Department of Psychology, U of Kentucky	
Abstract: Alco	hol is the most commonly abused substance worldwide. It is often co-abused with nicotine, which	
increases the o	difficulty of cessation of both substances. Despite having similar mechanisms of action, there is no	
single medication to treat the co-abuse. The objective of the current study is to analyze the effects of the opiate		
antagonist naltrexone on alcohol consumption and the co-use of alcohol and nicotine in female alcohol-preferring		
(P) rats. Six female P rats were trained in two phases. During Phase 1 (ethanol access), subjects had 2-bottle		
choice session	s with 0% (water) and 15% ethanol. In Phase 2 (concurrent access), rats still had access to ethanol	
bottles, but were also given access to nicotine (0.3 mg/kg/infusion, i.v.) using a standard 2-lever procedure (active		

vs. inactive levers). Naltrexone (0.15, 0.3, or 0.6 mg/kg s.c.) treatments were administered to determine its effects on alcohol and nicotine consumption. Half the animals received naltrexone treatments during Phase 1, and half received treatments during Phase 2. During Phase 1 (ethanol access), naltrexone had no significant effect on ethanol or water consumption. Results from Phase 2 (concurrent access) showed that naltrexone dosedependently reduced ethanol consumption, and reduced water consumption at the highest dose (0.6 mg/kg). Naltrexone did not have any significant effects on active lever presses for nicotine, but reduced inactive lever presses only at the lowest dose (0.15 mg/kg). Naltrexone is more effective in treating alcohol use when tested in combination with nicotine rather than when tested alone.

Supported by:	NIH grants: UL1	TR000117, P50 DA05312, T32 DA016176	, R01AA025591, and U24AA015512
Primary Presenter / email:		Hamid, U. Z. / usman.hamid@uky.edu Undergraduate Student	University of Kentucky
Mentor / e-mai	l:	Bardo, M. T. / mbardo@uky.edu	

	<u> </u>		
	Poster Presentation #167		
Abstract Title:	The Effects of a Bacterial Endotoxin on Synaptic Transmission at the Neuromuscular Junction: Drosophila and Blowfly Models		
Author(s):	 M. C. McNabb, Department of Biology, U of Kentucky Z. Paneitz, Department of Biology, U of Kentucky O. Istas, Department of Biology, U of Kentucky A. Greenhalgh, Department of Biology, U of Kentucky W. Casto Jr, Department of Biology, U of Kentucky S. Gilbert, Department of Biology, U of Kentucky P. Katta, Department of Biology, U of Kentucky A. Amaya, Department of Biology, U of Kentucky G. Conrad, Department of Biology, U of Kentucky O. Criswell, Department of Biology, U of Kentucky S. Hieneman, Department of Biology, U of Kentucky J. Middleton, Department of Biology, U of Kentucky J. Murphy, Department of Biology, U of Kentucky H. Roach, Department of Biology, U of Kentucky H. Roach, Department of Biology, U of Kentucky H. Thornberry, Department of Biology, U of Kentucky K. Ballinger Boone, Department of Biology, U of Kentucky R. L. Cooper, Department of Biology, U of Kentucky 		
	e bacterial endotoxins lipopolysaccharides (LPS) are known to have direct effects on synaptic at neuromuscular junctions (NMJ) in some invertebrates and mammals. Generally, LPS increases		
	and random fusion of synaptic vesicles resulting in enhanced transmitter release in a sporadic		
	ature of the effect, and its reversibility, varies depending on the synaptic preparation examined. The		
	toxin has not been investigated in larval Drosophila NMJs to determine the effects. This model		
	ty to potentially address the mechanism of action of LPS on voltage gated Ca2+ channels or other various genetic alterations. In addition, the effect of Ca2+ obtained from extracellular and		
	ganelles in influencing synaptic vesicle fusion can be addressed in this synaptic model. Larvae of		
	ch are used as therapy for debriding dead tissue in wound care, are exposed to bacterial		
endotoxins. Few studies have investigated the actions of different forms of LPS endotoxins on therapeutic			

blowflies to assess survival and physiological function. At 100 μ g/ml of LPS from two common strains (Pseudomonas aeruginosa and Serratia marcescens), no effects were observed on evoked transmission or spontaneous vesicle fusion within 2 minutes for larvae of blow flies or Drosophila. At 500 μ g/ml of Serratia marcescens, both blowfly and drosophila larvae NMJs displayed a decreased evoked synaptic response amplitude. We are now running 500 μ g/ml Pseudomonas aeruginosa trials to determine that strains synaptic transmission. This is an authentic course-based undergraduate research experience (ACURE).

Supported by:	Sustaining Excellence-2014 Howard Hughes Medical Institute (Grant #52008116) awarded upported by: Univ. of KY (VM Cassone, PI) & Dept of Biology, Univ. of KY student laboratory fees Bio199 Bio446.		
Primary Presenter / email:		McNabb, M. C. / mcmc244@uky.edu	University of Kentucky
		Undergraduate Student	
Mentor / e-mail:		Cooper, R. L. / rlcoop1@uky.edu	

13th Annual CCTS Spring Conference Eriday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	1 5		
	Poster Presentation #168		
The Dependence on Nerve Evoked Conditions in Relation to the Occurrence of			
Abstract Title:	opontaneous adamai Events at Drosophila Neuroniuseulai vunetions		
	C. Ballinger Boone, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	T. Donovan, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	R. Shumard, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	A. Cooper, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	M. Melody, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	T. Hickey, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	C. Hermanns, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	Z. R. Majeed, Dept. of Biology, U of Salahaddin, Erbil, Iraq		
	M. Cornelius, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
Author(s):	H. Garrigus, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
Autrior(3).	E. Higgins, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	M. Labarre, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	A. Larson, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	M. McNabb, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	K. Monticello, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	B. Stockwell, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	P. Boachie, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	A. Ho, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	B. Slabach, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	R. L. Cooper, Dept. of Biology and Center of Muscle Biology, U of Kentucky		
	naptic vesicles will spontaneously fuse at synaptic sites with this mechanism related to the Ca2+		
	within the presynaptic nerve terminal. We set out to examine if the occurrence of spontaneous		
	after a series of evoked stimulations is correlated to the frequency and duration of a stimulus train.		
	cilitation at the neuromuscular junctions is due in part to residual Ca2+ in the nerve terminal.		
	roked release from high efficacy synapses result in evoked depression then the limiting factor may		
be the number of readily release vesicles to sense residual Ca2+. Thus, a lower frequency in occurrence of these			
minis may depend on the degree of the evoked synaptic depression. In addition, the frequency in occurrence of			
minis may also be independent of evoked events if the vesicles that give rise to the events are independent of			
each other. We hypothesize that the residual Ca2+ should affect the frequency of mini occurrence. We analyzed			
the frequency in occurrences of minis with differing stimulating conditions using the Drosophila NMJ. Preliminary			
	40 and 60Hz stimulation of 30 pulses indicates that the nerve terminal is able buffer the internal		
	ickly and not impact the frequency of minis under these conditions. A better understanding of these		
	help to address the residue effect of nerve stimulation on synaptic transmission in various conditions. This is an authentic course-based undergraduate research experience (ACURE).		
Supported by:	KY Sci. and Eng. FDN, KSEF-3712- RDE-019 (RLC)		
Primary Prese	nter / email: Ballinger Boone C. / crha248@uky.edu I Iniversity of Kentucky		

Primary Presenter / email:	Ballinger Boone, C. / crba248@uky.edu	University of Kentucky
-	Undergraduate Student	
Mentor / e-mail:	Cooper, R. L. / robinlewiscooper1@gmail.c	om

13th Annual CCTS Spring Conference Friday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #169	
Abstract Title:	Loss of myelin integrity causes marked astrogliosis in an Alzheimer's disease-relevant mouse model.	
Author(s):	 E. Higgins, College of Arts and Sciences, U of Kentucky M. Beecham, College of Arts and Sciences, U of Kentucky T. Macheda, Spinal Cord & Brain Injury Research Center, U of Kentucky K. Roberts, Spinal Cord & Brain Injury Research Center, U of Kentucky A.D. Bachstetter, Spinal Cord & Brain Injury Research Center, U of Kentucky 	
Supported by:	R00 AG044445	
Primary Presenter / email: Higgins, E. / emma.higgins@uky.edu University of Kentucky Undergraduate Student		

Mentor / e-mail:

Undergraduate Student Bachstetter, A. / adam.bachstetter@uky.edu

13th Annual CCTS Spring Conference Lexington Convention Center Friday, April 13, 2018 34th Annual BGSFN Spring Neuroscience Day

	of Annual Boot A opining Real oblicition buy		
	Poster Presentation #170		
Abstract Title:	The effect of dehydration on mild traumatic brain injury in mice		
	R. Brakeville, College of Arts and Sciences, U of Kentucky		
	T. Macheda, Spinal Cord & Brain Injury Research Center, U of Kentucky		
	K. Roberts, Spinal Cord & Brain Injury Research Center, U of Kentucky		
Author(s):	J. Santollo, Department of Biology, U of Kentucky		
	A. Glueck, Sports Medicine Research Institute, U of Kentucky		
	D. Han, Department of Neurology, U of Kentucky		
	A. Bachstetter, Spinal Cord & Brain Injury Research Center, U of Kentucky		
	Abstract: Dehydration is known to have the ability to change the volume of many brain structures, as well as,		
	produce confounding symptoms that resemble concussive injuries. In the present study, we examined the effect		
of dehydration on brain injuries in C57BI/6J mice. We hypothesize that dehydration at the time of a brain injury			
significantly worsens axonal injury and related clinical sequelae. For this study, we conducted the radial arm water			
	maze (RAWM) and passive avoidance post-injury to quantify the effects of the injury on memory and learning.		
	However, neither behavioral assay produced significant differences between the sham and dehydrated mice.		
These results	suggest that dehydration does not increase the damage produced by a concussive brain injury.		
Supported by:	Igniting Research Collaborations (IRC) pilot program		
Primary Prese	enter / email: Brakeville, R. / rachel.brakeville@uky.edu University of Kentucky Undergraduate Student		
Mentor / e-mai	il: Bachstetter, A. D. / adam.bachstetter@uky.edu		

	Poster Presentation #171
Abstract Title:	Differential Reinforcing Effect of Methamphetamine Isomers
Author(s):	 R. A. Buster, Department of Psychology, U of Kentucky E. D. Denehy Department of Psychology, U of Kentucky S. J. Kohut, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA J. Bergman, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA B. E. Blough, Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, USA L. P. Dwoskin, College of Pharmacy, U of Kentucky M. T. Bardo, Department of Psychology, Center for Drug Abuse Research Translation, U of
pharmaceutica	Kentucky hamphetamine is a Schedule II stimulant with a high potential for abuse. Currently there are no I therapies specific to methamphetamine addiction. Although the d-isomer is known to be the active nphetamine (METH), preclinical work in monkeys has shown that the I-isomer of methamphetamine
(PAL-1311) ha cocaine; howe	s a weak reinforcing effect, and thus may serve as a substitute for stimulants such as METH or ver, monkeys used in that study were not drug naïve, but instead had a history of cocaine current experiment sought to compare the reinforcing effect of METH and PAL-1311 in drug naïve
rats. Rats wer procedure, with	e trained to acquire IV self-administration of either METH or PAL-1311 using a standard 2-lever in dosing varied between test days to derive a dose-response curve for each isomer. The results hile both METH and PAL-1311 engendered reliable self-administration, the dose of PAL-1311
required to elic although both	it maximal responding was approximately 10 times higher for PAL-1311 than for METH. Moreover, drugs yielded an inverted U-shaped dose-effect curve, the curve for PAL-1311 was flattened and light compared to METH. These results suggest that PAL-1311 has a weak reinforcing effect.

shifted to the right compared to METH. These results suggest that PAL-1311 has a weak reinforcing effect compared to METH, as demonstrated in previous preclinical work in monkeys. From a clinical perspective, this suggests the possibility that when administered at high enough doses, PAL-1311 may serve as a substitute for METH in those suffering from addiction.

Supported by:	NIH grants DA002519, DA039306, DA12970, P50DA05312, U01DA01319.			
Primary Presenter / email:		Buster, R. A. / rabuster@me.com Undergraduate Student	University of Kentucky	
Mentor / e-mail:		Bardo, M. T. / mbardo@uky.edu		

	Poster Presentation #172
Abstract Title:	Cortical correlates of memory accuracy and reaction times in healthy older adults
	E. Willis, U of Kentucky
	L. S. Broster, U of Kentucky, USCF
	H. Huang, U of Florida, U of Pittsburg
	E. Abner, U of Kentucky
	R. Kryscio, U of Kentucky
Author(s):	E. Schmitt, U of Kentucky
	G. Jicha, U of Kentucky
	L. Van Eldik, U of Kentucky
	C. Smith, U of Kentucky
	M. Ding, U of Florida
	Y. Jiang, U of Kentucky
Abstract: Patie	ents with Alzheimer's disease have diminished memory performance, i.e. less accurate, more false

Abstract: Patients with Alzheimer's disease have diminished memory performance, i.e. less accurate, more false alarm, and increased reaction times during a memory task. For many healthy older adults, whether poor performance is part of normal aging or a risk of mild cognitive impairment is not clear. Here we test the hypothesis that functional brain responses in selective regions are correlated with either memory accuracy or response times. 44 older adults (25 females; aged 65-93), from University of Kentucky Alzheimer's Disease Center cohort, participated in the magnetic resonance imaging (MRI) were put through a series of behavioral tasks using the Bluegrass during a short-term memory task. Liner regression analyses were performed on event-related functional MRI and individual performance results. We found that bilateral insula, the right frontal eye field, and bilateral inferior parietal lobe (IPL)showed a significant negative correlation to accuracy, and positive correlation to the number of false alarms (e.g. the right IPL and accuracy R2=0.2747; p < 0.001). On the other hand, the activity in bilateral hippocampi and the left amygdala significantly correlated to reaction times. These negative correlations indicate that increased activity in a brain is associated with impaired accuracy of the short-term memory. The present results will allow us to test the next step hypothesis whether the performance and brain activity measures are associated with cerebrospinal fluid (CSF) AD biomarkers ß-amyloid (Aß42) and taurelated neurodegeneration (p-Tau181), hallmark for AD pathology.

Supported by:	National Institute	e of Aging P30 AG028383 and R21 A	G044862	
Primary Presen	ter / email:	Willis, E. / emily.willis@uky.edu Undergraduate Student	University of Kentucky	
Mentor / e-mail:		Jiang, Y. / yjiang@uky.edu		

13th Annual CCTS Spring Conference Friday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

Poster Presentation #173		
Abstract Title:	Effects of Solidago Nemoralis on Fetal Alcohol Syndrome: A Water Maze Paradigm	
	B. Auvil, College of Arts and Sciences, U of Kentucky	
	S. Barron, Department of Psychology, U of Kentucky	
	L. Fields, Department of Psychology, U of Kentucky	
Author(s):	A. Hawkey, Department of Psychology, U of Kentucky	
	J.M. Littleton, Department of Psychology, U of Kentucky	
	L. Pack, College of Arts and Sciences, U of Kentucky	
	M. Knabel, College of Arts and Sciences, U of Kentucky	

Abstract: Alcohol ingestion during pregnancy can be detrimental to developing fetuses and can result in Fetal Alcohol Syndrome Disorder (FASD). FASD presents itself via behavioral, learning and cognition deficits and facial abnormalities. Existing studies suggest that drugs including Solidago nemoralis can reduce the effects of FASD by acting as an agonist on the alpha-7-nicotinic-acetylcholine-receptor. In the present study, ethanol was administered during a period of CNS development that overlaps the third trimester "brain growth spurt" of human pregnancy. ETOH (6g/kg/day) was given to Sprague-Dawley rat offspring on post-natal days (PND) 1-7. On PND 8, offspring were given either Solidago nemoralis or saline injections. To test for spatial learning and memory, a water maze paradigm was used in which the subject had to use external cues and an internal map to find a platform hidden under the water surface conducted on PND 40-45. The group that received ETOH paired with the Solidago nemoralis showed fewer deficits than the group that received only ETOH. The results in this study support the hypothesis that "third trimester" ETOH exposure impairs spatial learning and that a single administration of ETOH can result in deficits. It also showed that deficits associated with fetal alcohol exposure can be treated with Soliadgo nemoralis to help reduce effects of FASD and, in some cases, eliminate effects of FASD. The possible role of the alpha 7 in effects of prenatal ETOH exposure may also suggest that Solidago nemoralis has antioxidant properties. Further research is needed to understand the underlying mechanisms.

Supported by:	1R43 AA021038	8 awarded to J.M. Littleton		
Primary Presen	ter / email:	Auvil, B. / bmau222@g.uky.edu Undergraduate Student	University of Kentucky	
Mentor / e-mail:		Barron, S. / sbarron@uky.edu		

	Poster Presentation #174	
	The Effects of Solidago Nemoralis on Balance in Rodents Following 3rd Trimester Ethanol	
Abstract Title:	Exposure	
	L. Pack, Psychology Department, U of Kentucky	
	M. Knable, Psychology Department, U of Kentucky	
Λ , the ex(e).	B. Auvil, Psychology Department, U of Kentucky	
Author(s):	L. Fields, Psychology Department, U of Kentucky	
	J. M. Littleton, Psychology Department, U of Kentucky	
	S. Barron, Psychology Department, U of Kentucky	
Abstract: Etha	anol (ETOH) exposure during fetal development can have harmful effects on the central nervous	
system causing a variety of behavioral deficits. Previous studies have shown that following developmental ethanol		
	exposure drugs acting on the cholinergic system can reduce both behavioral deficits and hippocampal damage	

system causing a variety of behavioral deficits. Previous studies have shown that following developmental ethanol exposure, drugs acting on the cholinergic system can reduce both behavioral deficits and hippocampal damage. This reduction may be due to the activation of the alpha-7- nicotinic acetylcholine- receptor (a7nAChR). The current study examined the ability of Solidago nemoralis (SN) to reduce behavioral effects. Solidago nemoralis has agonist effects on the a7nAChR receptor, reducing the behavioral effects of ETOH exposure occurring in the "3rd trimester human pregnancy brain growth spurt" in rats. In this study, ETOH (6g/kg/day) was administered to the neonatal rat pups via intragastric intubation on postnatal days (PND) 1-7. Intubated and non-intubated control groups were also included in the process. On PND 8, during ETOH withdrawal, the rat pups received an injection of a flavonoid-enriched extract of SN (50 mg/kg) or saline. Balance was examined in adolescent offspring using a dowel rod. The distance traveled by the rats was measured with numbered increments on the dowel rod. This study indicated that both male and female ETOH exposed offspring showed balance deficits. With the addition of the SN extract, reduction of the deficits was observed relative to ETOH alone. These results support the potential neuroprotective properties of a SN flavonoid injection by decreasing some of the detrimental behavioral effects in this model of "3rd trimester" ETOH exposure.

Supported by: 1R43 AA021038 awarded to JML.

Primary Presenter / email:	Pack, L. / lapa232@uky.edu Undergraduate Student	University of Kentucky
Mentor / e-mail:	Barron, S. / sbarron@uky.edu	

13th Annual CCTS Spring Conference Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #175
Abstract Title:	NPY-Y1 Signaling Pathway Responsible for the Affective Component of Neuropathic Pain
	C. R. Wessel, Department of Physiology, U of Kentucky
Author(s):	W. Fu, Department of Physiology, U of Kentucky B. K. Taylor, Department of Anesthesiology, U of Pittsburg, Pittsburg, PA
after inflammat genetic or phar system produce These hyperal affective compo- study we used the sural branc period of hyper via a 5ul intrath pain, a condition Results: We for Discussion Alth represents not	kground Latent sensitization (LS) is a driving mechanism behind the development of chronic pain ory or neuropathic injury. LS can remain in remission due to endogenous pain inhibitory controls. A macological blockade of neuropeptide tyrosine Y1 (NPY-Y1) signaling in the central nervous es a reinstatement of hyperalgesic behaviors when administered long after peripheral nerve injury. gesic behaviors are models for the stimulus evoked component of pain. Whether LS involves the onent of pain, which is critical in the human pain experience, remains unclear. Methods In this a spared nerve injury model of neuropathic pain in the mouse in which the common peroneal and hes of the sciatic nerve were ligated and transected (CPxSx model). The CPxSx model produces a ralgesia that resolves after 4-5 weeks. After 37 days, Y1 receptors were targeted in the spinal cord need linjection of BIBO3304, a high affinity Y1 antagonist. To evaluate the affective component of oned place aversion (CPA) assay was used with a single day of chamber association conditioning. und that intrathecal BIBO3304 (5ug/5ul) produced CPA in CPxSx mice but not in sham controls. nough preliminary, our data indicates that LS that is masked by NPY-Y1 signaling in the spinal cord only a long-lasting vulnerability to the sensory/discriminative component of pain, but to the
analyses.	onent as well. Studies are in progress with additional mice to provide sufficient power to our
Supported by:	NIH award: RO1NS45954-11

 Primary Presenter / email:
 Wessel, C. R. / crwe229@uky.edu
 University of Kentucky

 Undergraduate Student
 University of Kentucky
 University of Kentucky

 Mentor / e-mail:
 Taylor, B. K. / BKT@pitt.edu
 Value

13th Annual CCTS Spring Conference Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	34 Annual Bool N opinig Neuroscience Day
	Poster Presentation #176
Abstract Title:	Potassium Conducting Kv4.2 Expression in the Neuropeptide Y1 Receptor Expressing Spinal Lamina II Neurons Increase After Injury as Revealed by Immunohistochemistry
Author(s):	S. Schmitt, Department of Physiology, U of Kentucky G. Sinha, Department of Physiology, U of Kentucky L. Zhang, Department of Physiology, U of Kentucky B.Taylor, Department of Physiology, U of Kentucky
in the mamma majority of the Patch clamp w exhibited Kv4. also believed antibodies, we 56% of Y1-eG Y1 receptor ex pain transmiss internalization meaning a sho this would lead studies with pl expression in	propeptide Y Y1 receptor expressing neurons are involved in pain processing and pain transmission als. Combined electrophysiological and anatomical studies from our laboratory have revealed that neurons in the lamina II region of adult mice are excitatory or glutamate containing interneurons. whole cell recordings in our laboratory revealed that the about 74% of Y1R expressing neurons 2 mediated voltage gated potassium currents which result in delayed action potential firing and are to be characteristic of excitatory neurons. Using immunohistochemistry with Kv4.2 primary e studied the lamina II region of the Y1-eGFP mouse spinal dorsal horn. Co-localization of about FP expressing neurons with Kv4.2 antibodies was observed. This provides evidence that majority of expressing neurons express Kv4.2 channels and putatively are excitatory. In the setting of injury, a sion can be exacerbated by the excitatory neurons. This could happen by phosphorylation and of Kv4.2 channels that would lead to a reduction of the absence or weaker Kv4.2 mediated currents orter duration of delay in action potential firing, as verified by electrophysiological recordings. Overall d to an increase in signal transmission. To test this hypothesis, we performed immunohistochemical nosphor-Kv4.2 antibodies. As expected we observed a higher percentage of phosphor-Kv4.2 our injured model compared to sham. In the sham model, about 56% of Y1-eGFP expressing cells d phosphor-Kv4.2, which increased to about 67% in our injury model.
	NINDS DO4NS045054 (Dr. Brodley Toylor)

Supported by: NI	NDS RO1NS045954 (Dr. Bradley Taylor)	
Primary Presenter /	/ email: Schmitt, S. / smsc242@uky.edu L Undergraduate Student	Iniversity of Kentucky
Mentor / e-mail:	Taylor, B. / brad.taylor@uky.edu	

13th Annual CCTS Spring Conference Friday, April 13, 2018 24th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #177
Abstract Title:	Reducing Behavioral Deficits and Cellular Damage In Ethanol Exposed Rats Using Flavinoids From the Goldenrod, Solidago Nemoralis.
Author(s):	M. Knabel, Psychology Department, U of Kentucky L. Pack, Psychology Department, U of Kentucky B. Auvil, Psychology Department, U of Kentucky L. Fields, Psychology Department, U of Kentucky A. Hawkey, Psychology Department, U of Kentucky J.M. Littleton, Psychology Department, U of Kentucky S. Barron, Psychology Department, U of Kentucky

Abstract: Ethanol (ETOH) exposure during development can have a negative impact on the central nervous system causing a variety of behavioral deficits. Previous research shows that drugs that act on the cholinergic system can reduce some of the behavioral deficits following ETOH exposure during development. This protection may be due to activating the alpa-7-nicotinic-acetylcholine-receptor (?7nAChR). This study examined Solidago nemoralis (SN), from goldenrods, and its agonist effects on ?7nAChRs to reduce the behavioral deficits of ETOH exposure during fetal development. Preliminary research from our lab found SN could reduce deficits in some paradigms following developmental ETOH exposure. Previous studies show that SN can reduce neurotoxicity caused by ETOH in cellular models. This study, 6g/kg/day of ETOH was administered to neonatal rats via intragastric intubation on postnatal days (PND) 1-7; a model for exposure during the human third trimester. Intubated/non-intubated control groups were also included. On PND 8, after the last ETOH intubation and during ETOH withdrawal, the pups were injected with a flavonoid-enriched extract of SN (50mg/kg) or saline. Attentional Set Shifting (ASST) was used to assess executive function, which can be affected by prenatal ETOH exposure. Offspring were tested on PND 55-60. ETOH exposed rats displayed deficits during the first phase of the complex discrimination task and ETOH exposed females displayed deficits in reversal learning. The ETOH exposed offspring that also received SN showed reduced deficits compared with ETOH alone. These results provide support for the role of ?7nAChRs as a possible mechanism as well as impairments of prenatal ETOH exposure.

Supported by: 1R43 AA021038	awarded to JML.	
Primary Presenter / email:	Knabel, M. / mackenzie.knabel@uky.edu Undergraduate Student	University of Kentucky
Mentor / e-mail:	Barron, S. / sbarron@uky.edu	

	Poster Presentation #178
Abstract Title:	The Effects of a Bacterial Endotoxin on Sensory Perception in Larvae
	 O. Istas, Department of Biology, U of Kentucky A. Greenhalgh, Department of Biology, U of Kentucky W. Casto Jr., Department of Biology, U of Kentucky S. Gilbert, Department of Biology, U of Kentucky P. Katta, Department of Biology, U of Kentucky
	A. Amays, Department of Biology, U of Kentucky
	G. Conrad, Department of Biology, U of Kentucky O. Criswell, Department of Biology, U of Kentucky
Author(s):	S. Hieneman, Department of Biology, U of Kentucky
()	J. Middleton, Department of Biology, U of Kentucky
	J. Murphy, Department of Biology, U of Kentucky
	C. Ordono, Department of Biology, U of Kentucky
	Z. Paneitz, Department of Biology, U of Kentucky
	H. Roach, Department of Biology, U of Kentucky
	H. Thornberry, Department of Biology, U of Kentucky
	L. Byrd, Department of Biology, U of Kentucky
	R. L. Cooper, Department of Biology, U of Kentucky
	nans experience lethargy during bacterial sepsis and even after a sepsis has been treated. The
	cts of sepsis make it difficult to distinguish the cause as many factors are involved including
	actions, treatment protocols, and even potentially direct actions of the bacteria endotoxin on cells.
	tect some forms of LPS and avoid eating foods tainted with LPS and even avoid laying eggs in
	environments. This suggests a direct action of being able to sense the bacteria. It is known that
	direct actions on sensory and motor neurons in mammals. Larvae of blow flies, which are used as
	priding dead tissue in wound care, are exposed to bacterial endotoxins and few studies have
	e actions of forms of LPS endotoxins on therapeutic blowflies to assess survival and physiological
	s study, we examined the effect of touch on the behavioral responses in larvae of Drosophila

melanogaster and larvae of blowfly with and without exposure to LPS in their diet over various time periods (24 to 48 hrs). We developed behavioral HAT assays for larvae to assess their reaction to tactile stimuli. Food tainted with 100 μ g/ml of LPS from two common strains (Pseudomonas aeruginosa and Serratia marcescens) were used. These are the specific bacterial strains which afflict humans and other mammals who have septicemia or potentially may be receiving maggot therapy for a wound care. Our studies are still ongoing. This presentation will include the results of these studies.

Supported by:		ellence-2014 Howard Hughes Medica BIO199 and BIO446	al Institute (Grant #52008116) -KY student
Primary Prese	nter / email:	Istas, O. / owis222@g.uky.edu	University of Kentucky
		Undergraduate Student	
Mentor / e-mai	il:	Cooper, R. L. / robinlewiscooper	1@gmail.com

13th Annual CCTS Spring Conference Friday, April 13, 2018 April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #179
Abstract Title:	Effects of Smoke Exposure on the Expression of Aggression-Related Genes in Honeybee Brains
Author(s):	J. Harrison, Neuroscience, U of Kentucky C. Rittschof, Department of Entomology, U of Kentucky J. Palmer, Department of Entomology, U of Kentucky
reasons for the investigate the environmentally regulated when suggests that su this hypothesis, opposed to sim brains of honey	use of smoke to pacify honeybee colonies has been employed by beekeepers for millennia, but the effectiveness of this technique are still not well-understood. This ongoing study will be the first to beenomenon through the lens of gene expression. Past research has identified several -regulated genes which correlate to levels of behavioral aggression. These genes are up- a bee detects the odor of alarm pheromone, and a leading hypothesis for the effects of smoke moke exposure impairs a bee's ability to sense alarm pheromone. We offer a slight modification to and postulate that smoke inhalation actively down-regulates aggression-related genes, as oly masking the perception of aggression-inducing stimuli. By analyzing messenger RNA from the bees shortly after exposure to smoke, we look to find significantly less transcription of aggression-then compared to non-exposed bees, thus establishing a genomic basis for the aggression-
Supported by: Primary Presen	The Rittschof Lab at the University of Kentucky ter / email: Harrison, J. / jwharrison@uky.edu University of Kentucky
	Undergraduate Student

Rittschof, C. / clare.rittschof@uky.edu

Mentor / e-mail:

13th Annual CCTS Spring Conference Lexington Convention Center Friday, April 13, 2018 34th Annual BGSFN Spring Neuroscience Day

	Poster Presentation #180
Abstract Title:	Oxytocin Release and Reward Pathway Activation Following Social Play
	K.R. Einloth, Department of Psychology, U of Kentucky
	L.R. Hammerslag, Department of Psychology, U of Kentucky
Author(s):	E.D. Denehy, Department of Psychology, U of Kentucky
	D. Vazquez-Sanroman, Department of Anatomy and Cell Biology, Oklahoma State U
	M.T. Bardo, Department of Psychology, U of Kentucky
	adolescent stage of development is marked by a heightened emphasis on social interaction. This
highly conserve	ed feature of development can be modeled in rodents. Rats engage in social play more during their
adolescent sta	ge than at any other point in their lives, and social play is especially rewarding in adolescent rats.
	on and bonding cause the hormone oxytocin to be released from the paraventricular nucleus (PVN)
and supraoptic	nucleus (SON) of the hypothalamus. It is possible that the rewarding effects of social play are
	cytocin release to regions of the reward pathway, such as the prefrontal cortex (PFC) and nucleus
	Ac). This experiment sought to determine whether social play activates oxytocinergic neurons in
	ow this release affects activity in the reward pathway. Male adolescent Sprague-Dawley rats
	d one 15-minute session to explore a microdialysis chamber for three consecutive days. On the
	the rats were given another 15-minute session by themselves, while the other half were given a
	session in the chamber with another rat. Rats that interacted with their peers had a significant
	number of oxytocin-releasing neurons that were activated in the PVN. Furthermore, the NAc and
	al PFC were more active following play. In rats that were isolated, increased PVN activation was
	n decreased NAc activation, but this relationship was not present following play. The results of this
experiment pro	vide insight into the connection between oxytocin and the reward pathway.
Supported by:	NIH Award DA041755 and NIH T32 DA16176
Primary Preser	hter / email: Einloth, K. R. / katelyn.einloth@gmail.com University of Kentucky

Primary Presenter / email:	Einloth, K. R. / katelyn.einloth@gmail.com Undergraduate Student	University of Kentucky
Mentor / e-mail:	Bardo, M.T. / mbardo@uky.edu	

13th Annual CCTS Spring Conference Friday, April 13, 2018 34th Annual BGSFN Spring Neuroscience Day

	34 Annual Boot N Opining Neuroscience Day		
	Poster Presentation #181		
Abstract Title:	Oxytocin as Preclinical Treatment for Socially-Induced Reinstatement		
	J. R. Johnson, Department of Psychology, U of Kentucky		
Author(s):	L. R. Hammerslag, Department of Psychology, U of Kentucky		
/ (0/)	M. T. Bardo, Department of Psychology, U of Kentucky		
	J. S. Beckmann, Department of Psychology, U of Kentucky		
	atients recovering from drug addiction, social cues are a common cause of relapse. Preclinically,		
	delled using the self-administration and reinstatement paradigm. For example, in cue-induced		
	a drug-associated light can trigger cocaine seeking. However, few preclinical reinstatement studies		
	on social influences, and thus it is not known if cue-induced reinstatement generalizes to socially		
	induced relapse. Oxytocin may play an important role in social-induced relapse because this neuropeptide		
	ial recognition and decreases cue-induced reinstatement. The purpose of this experiment was to		
	find if oxytocin would also decrease reinstatement triggered by encountering a cocaine-associated peer. Over the		
	lays, male Sprague-Dawley rats self-administered cocaine (0.1 mg/kg/infusion) in the presence of		
	S+ peer) and saline in the presence of a different partner (S- peer) during randomly presented twice-		
	daily sessions. Each infusion was paired with a 20-s timeout period, signaled by the illumination of a light (CS).		
	underwent extinction and cue-induced reinstatement tests with a pretreatment of either saline or 0.3		
	mg/kg oxytocin. Each rat received four reinstatement tests (no cue or peer, CS present, S+ present, and CS/S+		
present). The rats that received oxytocin had significantly reduced reinstatement compared to the group given			
saline for all tests. The effects of oxytocin did not differ between cue and social-induced reinstatement. These			
	hat oxytocin has clinical potential to be used for preventing relapse triggered by exposure to drug-		
associated pee			
Supported by:	NIH T32 DA16176 R21 DA041755		
Primary Prese	enter / email: Johnson, J. R. / jrjo237@g.uky.edu University of Kentucky Undergraduate Student		

Mentor / e-mail:

Undergraduate Student Bardo, M. T. / mbardo@uky.edu

Poster Presentation #182		
Abstract Title:	Can Solidago nemoralis Reduce Spatial Learning Deficits following '3rd' Trimester Ethanol Exposure in a Rodent Model?	
Author(s):	 B.M. Auvil, Psychology Department, U of Kentucky L. Pack, Psychology Department, U of Kentucky M. Knabel, Psychology Department, U of Kentucky L. Fields, Psychology Department, U of Kentucky J.M. Littleton, Psychology Department, U of Kentucky S. Barron, Psychology Department, U of Kentucky 	
Abstract: Alec	hol consumption during pregnancy can harm the developing offspring and can result in Fetal	

Abstract: Alcohol consumption during pregnancy can harm the developing offspring and can result in Fetal Alcohol Spectrum Disorders (FASD). Offspring with an FASD can display behavioral, learning and cognitive deficits. Recent preliminary data from our laboratory suggests that flavonoids including Solidago nemoralis can reduce some of the effects of fetal alcohol exposure by acting as an agonist on the alpha-7-nicotinic-acetylcholine-receptor or by its anti-inflammatory actions in in vivo and in vitro rodent models. In the present study, ethanol was administered during a period of CNS development that overlaps the third trimester "brain growth spurt" of human pregnancy. ETOH (6g/kg/day) was given to Sprague-Dawley rat offspring on postnatal days (PND) 1-7. On PND 8, offspring were given either Solidago nemoralis or saline injections. To test for spatial learning and memory, a water maze paradigm was used in which the subject had to use external cues and an internal map to find a platform hidden under the water surface. Subjects were tested on PND 40-45. The group that received ETOH paired with the Solidago nemoralis learned the spatial task more quickly than the group that received only ETOH. These results support the hypothesis that "third trimester" ETOH exposure impairs spatial learning and that a single administration of Soliadgo nemoralis can help improve performance. Further research is needed to understand the underlying mechanisms and whether this generalizes to other behaviors.

Supported by: 1R43 AA021038	awarded to JML		
Primary Presenter / email:	Auvil, B. / bmau222@g.uky.edu Undergraduate Student	University of Kentucky	
Mentor / e-mail:	Barron, S. / sbarron@uky.edu		

13th Annual CCTS Spring Conference Erriday, April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

Abstract Title: Effect of Long-term Dietary Vitamin D3 Supplementation on Cognition in Aging Male and Female F344 Rats J. R. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky K. L. Anderson, Department of Pharmacology and Nutritional Sciences, U of Kentucky H. N. Frazier, Department of Pharmacology and Nutritional Sciences, U of Kentucky A. O. Ghoweri, Department of Pharmacology and Nutritional Sciences, U of Kentucky Author(s): O. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky J. C. Gant, Department of Pharmacology and Nutritional Sciences, U of Kentucky S. D. Kraner, Department of Pharmacology and Nutritional Sciences, U of Kentucky L. D. Brewer, Department of Pharmacology and Nutritional Sciences, U of Kentucky M. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky Abstract: Previously, we reported mid-aged F344 male rats on an enhanced, long-term vitamin D supplemental diet (cholecalciferol, VitD3: 10,000 IU/kg chow) showed improved cognition and elevated hippocampal gene expression compared to rats on standard and low VitD3 diets (Latimer et al. 2014). Here, we compared the long-term effects (6 months) of the enhanced VitD3 diet to the standard AIN-93 diet (1,000 IU VitD3/Kg) on cognition in mid-aged female and male F344 rats. Cognition was determined using the Morris water maze. Animals were trained for 3 days to find a submerged platform followed by a probe trial. Then, animals were trained for 1 day to find a new platform location (spatial reversal) followed by a reversal probe. There was no difference in pathlength and latency to the platform according to sex or treatment (2-way ANOVA) on training days 1 and 2. On training day 3 pathlength was significantly less in females (18%) an		
Abstract Title: Female F344 Rats J. R. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky K. L. Anderson, Department of Pharmacology and Nutritional Sciences, U of Kentucky H. N. Frazier, Department of Pharmacology and Nutritional Sciences, U of Kentucky A. O. Ghoweri, Department of Pharmacology and Nutritional Sciences, U of Kentucky A. Unterstand Author(s): O. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky J. C. Gant, Department of Pharmacology and Nutritional Sciences, U of Kentucky S. D. Kraner, Department of Pharmacology and Nutritional Sciences, U of Kentucky L. D. Brewer, Department of Pharmacology and Nutritional Sciences, U of Kentucky L. D. Brewer, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky n. M. Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N		Poster Presentation #183
 K. L. Anderson, Department of Pharmacology and Nutritional Sciences, U of Kentucky H. N. Frazier, Department of Pharmacology and Nutritional Sciences, U of Kentucky A. O. Ghoweri, Department of Pharmacology and Nutritional Sciences, U of Kentucky Author(s): O. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky J. C. Gant, Department of Pharmacology and Nutritional Sciences, U of Kentucky S. D. Kraner, Department of Pharmacology and Nutritional Sciences, U of Kentucky L. D. Brewer, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky Abstract: Previously, we reported mid-aged F344 male rats on an enhanced, long-term vitamin D supplemental diet (cholecalciferol, VitD3: 10,000 IU/kg chow) showed improved cognition and elevated hippocampal gene expression compared to rats on standard and low VitD3 diets (Latimer et al. 2014). Here, we compared the long- term effects (6 months) of the enhanced VitD3 diet to the standard AIN-93 diet (1,000 IU VitD3/Kg) on cognition in mid-aged female and male F344 rats. Cognition was determined using the Morris water maze. Animals were trained for 3 days to find a submerged platform followed by a probe trial. Then, animals were trained for 1 day to find a new platform location (spatial reversal) followed by a reversal probe. There was no difference in pathlength and latency to the platform according to sex or treatment (2-way ANOVA) on training days 1 and 2. On training day 3 pathlength was significantly less in females (18%) and latency increased in VitD3 treated animals (19%). The probe test showed that enhanced VitD3 treatment significantly reduced (P = 0.01; ~70%) pathlength and latency to the platform in females but not males. Next, the one day of re	Abstract Title:	
diet (cholecalciferol, VitD3: 10,000 IU/kg chow) showed improved cognition and elevated hippocampal gene expression compared to rats on standard and low VitD3 diets (Latimer et al. 2014). Here, we compared the long-term effects (6 months) of the enhanced VitD3 diet to the standard AIN-93 diet (1,000 IU VitD3/Kg) on cognition in mid-aged female and male F344 rats. Cognition was determined using the Morris water maze. Animals were trained for 3 days to find a submerged platform followed by a probe trial. Then, animals were trained for 1 day to find a new platform location (spatial reversal) followed by a reversal probe. There was no difference in pathlength and latency to the platform according to sex or treatment (2-way ANOVA) on training days 1 and 2. On training day 3 pathlength was significantly less in females (18%) and latency increased in VitD3 treated animals (19%). The probe test showed that enhanced VitD3 treatment significantly reduced (P = 0.01; ~70%) pathlength and latency to the platform in females but not males. Next, the one day of reversal training indicated no effect of sex or diet. The reversal probe, conducted three days later, indicated that VitD3 treatment significantly reduced pathlength and latency (P<0.05; ~60%) in males but not females. These results strengthen the hypothesis that		 K. L. Anderson, Department of Pharmacology and Nutritional Sciences, U of Kentucky H. N. Frazier, Department of Pharmacology and Nutritional Sciences, U of Kentucky A. O. Ghoweri, Department of Pharmacology and Nutritional Sciences, U of Kentucky O. Thibault, Department of Pharmacology and Nutritional Sciences, U of Kentucky J. C. Gant, Department of Pharmacology and Nutritional Sciences, U of Kentucky S. D. Kraner, Department of Pharmacology and Nutritional Sciences, U of Kentucky L. D. Brewer, Department of Pharmacology and Nutritional Sciences, U of Kentucky N. M. Porter, Department of Pharmacology and Nutritional Sciences, U of Kentucky
cognitive pathways in a sex specific manner.	diet (cholecalci expression con term effects (6 mid-aged fema trained for 3 da find a new platt and latency to day 3 pathleng The probe test latency to the p or diet. The rew pathlength and optimal blood la	iferol, VitD3: 10,000 IU/kg chow) showed improved cognition and elevated hippocampal gene npared to rats on standard and low VitD3 diets (Latimer et al. 2014). Here, we compared the long- months) of the enhanced VitD3 diet to the standard AIN-93 diet (1,000 IU VitD3/Kg) on cognition in ale and male F344 rats. Cognition was determined using the Morris water maze. Animals were ays to find a submerged platform followed by a probe trial. Then, animals were trained for 1 day to form location (spatial reversal) followed by a reversal probe. There was no difference in pathlength the platform according to sex or treatment (2-way ANOVA) on training days 1 and 2. On training th was significantly less in females (18%) and latency increased in VitD3 treated animals (19%). showed that enhanced VitD3 treatment significantly reduced ($P = 0.01$; ~70%) pathlength and olatform in females but not males. Next, the one day of reversal training indicated no effect of sex versal probe, conducted three days later, indicated that VitD3 treatment significantly reduced I latency (P <0.05; ~60%) in males but not females. These results strengthen the hypothesis that evels of vitamin D are important for healthy brain aging. Furthermore, vitamin D may affect

Primary Presenter / email:	Thibault, J. R. / julien.thibault@uky.edu Undergraduate Student	University of Kentucky
Mentor / e-mail:	Porter, N. M. / Nadap@uky.edu	

13th Annual CCTS Spring Conference April 13, 2018 Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day Friday, April 13, 2018

Poster Presentation #184		
Abstract Title:	Exploring Approaches to Promote Respiratory Motor Plasticity Through Varied and Fixed Intermittent Hypoxia	
	A.L. Silverstein, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
	K.J. Ritter, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
	D.R. Stoltz, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
	L.E. Hager, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
Author(s):	C.M. Calulot, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
	R.S. Maggard, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
	E.E. Huffman, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
	W.S. Witt, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
	W.J. Alilain, Spinal Cord and Brain Injury Research Center, Department of Neuroscience, U of Kentucky	
subject to h this treatme plasticity kn of operant of subject resp therefore hy optimized. S produce a n output. Here breathing m functionally naïve rats to opposite fro they sugges	ixed interval intermittent hypoxia treatment (FIH) consists of the repeated, alternating exposure of a ypoxic and normoxic conditions which persist for a consistent and equal duration of time. In animals, and is often utilized to induce a prolonged increase in phrenic motor output, a type of respiratory motor own as Long Term Facilitation (LTF). This treatment exhibits similarity to the psychological construct conditioning and as such, each interval of hypoxia can be construed as the period during which the bonds with heightened respiratory drive and is subsequently reinforced by an interval of normoxia. We pothesize that classical intermittent hypoxia procedure is a form of operant conditioning which can be Specifically, varying the duration of hypoxia and therefore the schedule of reinforcement is predicted to nore extinction-resistant behavior, in this case promoting a more long-lasting increase of phrenic motor e we utilized the widely accepted technique of diaphragm electromyographic recording to assess lotor output. Preliminary data suggests that exposure of C2 hemisected rats to VIH results in insufficient plasticity when compared to maximal diaphragm output induced by nasal occlusion. In reated by VIH, spinal cord application of serotonin depressed breathing motor output, an effect im that observed after FIH. These data inspire further analysis of our construed operant procedure, as set that FIH may actually promote a higher level of respiratory motor plasticity than VIH.	
Supported by:	Startup funds from UK College of Medicine (WJA)	
	senter / email: Silverstein, A. L. / aaron.silverstein@uky.edu University of Kentucky	

by:	5
Primary Presenter / email:	Silverstein, A. L. / aaron.silverstein@uky.edu University of Kentucky
	Undergraduate Student
Mentor / e-mail:	Alilain, W. J. / warren.alilain@uky.edu

13th Annual CCTS Spring Conference Lexington Convention Center 34th Annual BGSFN Spring Neuroscience Day

	ing Neuroscience Day		
Poster Pres	entation #185		
Abstract Title: The Contribution of AMPA Receptor	Subunits to Chronic Pain States		
C. M. Grachen, Department of Physiolo	gy, U of Kentucky		
Author(s): B. K. Taylor, Department of Physiology,			
S. Doolen, Department of Physiology, L			
Abstract: Central sensitization (CS) of neurons in the de			
hyperalgesia and chronic pain. CS is mediated at least in			
	ility to hyperalgesia that remains after CS, which is known		
	-4-isoxazole propionic acid receptors (AMPARs) mediate		
	aptic plasticity of spinal cord neurons. AMPAR channels		
	are tetramers that consist of a combination of four subunits (GluA1-GluA4). AMPARs are present in nearly all		
excitatory synapses in the DHSC. Channels that contain a GluA2 subunit are Ca2+-impermeable (CI), while			
GluA2-lacking AMPARs are Ca2+-permeable (CP). Under normal conditions, AMPARs in the dorsal horn are			
mostly Ca2+ impermeable, but perturbations can alter subunit composition and thereby increase AMPAR Ca2+			
permeability. We hypothesized that an inflammatory insult involving the intraplantar injection of complete Freund's			
adjuvant (CFA), would increase either GluA1 or GluA4 expression at the post-synaptic density (PSD), followed by a subsequent increase in GluA2-lacking CP-AMPARs, ultimately leading to an increase in spinal pain			
transmission. To test this idea, mechanical threshold wa			
	observed at day 2 and resolved by days 14-21. PSD was		
	anti-PSD95 and anti-synaptophysin antibodies. We used		
western blotting techniques to identify GluA1, GluA2, an			
	day 2 (100 \pm 4.32% for naïve vs. 174.1 \pm 23.18% for d2;		
	in GluA4 expression at 21d post injury (100 \pm 5.52% for		
naïve vs. $143.2 \pm 12.39\%$ for d21; p = 0.03, n = 6-7). Alt			
data suggest that the expression of GluA1 and GluA4 in			
development and/or maintenance of neuropathic pain.			
NIH award: R01DA37621 to BKT, NIH a	ward: K01DA031961 to SD, and the Center for Analgesia		
Supported by: Research Excellence			
Primary Presenter / email: Grachen, C. M. / cm	gr239@g.uky.edu University of Kentucky		

Primary Presenter / email:	Grachen, C. M. / cmgr239@g.uky.edu Undergraduate Student	University of Kentucky
Mentor / e-mail:	Taylor, B. K. / brad.taylor@uky.edu	

